• 제목/요약/키워드: seismic motions

검색결과 810건 처리시간 0.025초

Seismic evaluation of isolated skewed bridges using fragility function methodology

  • Bayat, M.;Daneshjoo, F.;Nistico, N.;Pejovic, J.
    • Computers and Concrete
    • /
    • 제20권4호
    • /
    • pp.419-427
    • /
    • 2017
  • A methodology, based on fragility functions, is proposed to evaluate the seismic performance of seismic isolated $45^{\circ}$ skewed concrete bridge: 1) twelve types of seismic isolation devices are considered based on two different design parameters 2) fragility functions of a three-span bridge with and without seismic isolation devices are analytically evaluated based on 3D nonlinear incremental dynamic analyses which seismic input consists of 20 selected ground motions. The optimum combinations of isolation device design parameters are identified comparing, for different limit states, the performance of 1) the Seismic Isolated Bridges (SIB) and 2) Not Seismic Isolated Bridge (NSIB) designed according to the AASHTO standards.

수평 양방향 지반운동이 작용하는 직사각형 액체저장탱크의 지진응답 특성 (Characteristics of Earthquake Responses of a Rectangular Liquid Storage Tanks Subjected to Bi-directional Horizontal Ground Motions)

  • 이진호;이세혁
    • 한국전산구조공학회논문집
    • /
    • 제33권1호
    • /
    • pp.45-53
    • /
    • 2020
  • 액체저장탱크의 지진 거동은 유체-구조물 상호작용에 의해 복잡하게 나타나므로, 이 시스템의 지진응답과 피해를 정확하게 예측하기 위해서는 이를 엄밀히 고려하여야 한다. 이 연구에서는 유체-구조물 상호작용을 엄밀히 고려하여 양방향 수평 지반운동이 작용하는 직사각형 액체저장탱크의 지진응답 해석을 수행하고 그 응답 특성을 분석하고자 한다. 이를 위해 지진하중 작용 시 발생하는 유체 동수압을 유한요소 기법을 사용하여 산정하고, 이 동수압을 구조물의 유한 요소에 작용하여 전체 시스템의 동적 거동을 모사한다. 예제 직사각형 액체저장탱크의 지진응답 해석을 통하여 대상 시스템의 동적 거동은 양방향 수평 지반운동이 작용하는 방위각에 의해 유의미한 영향을 받음을 확인할 수 있다. 그러므로 직사각형 액체저장탱크의 내진설계를 수행하거나 내진성능을 검토할 때는 이러한 특성을 고려하여야 할 것이다.

Prediction of Strong Ground Motion in Moderate-Seismicity Regions Using Deterministic Earthquake Scenarios

  • 강태섭
    • 한국지진공학회논문집
    • /
    • 제11권4호
    • /
    • pp.25-31
    • /
    • 2007
  • For areas such as the Korean Peninsula, which have moderate seismic activity but no available records of strong ground motion, synthetic seismograms can be used to evaluate ground motion without waiting for a strong earthquake. Such seismograms represent the estimated ground motions expected from a set of possible earthquake scenarios. Local site effects are especially important in assessing the seismic hazard and possible ground motion scenarios for a specific fault. The earthquake source and rupture dynamics can be described as a two-step process of rupture initiation and front propagation controlled by a frictional sliding mechanism. The seismic wavefield propagates through heterogeneous geological media and finally undergoes near-surface modulations such as amplification or deamplification. This is a complex system in which various scales of physical phenomena are integrated. A unified approach incorporates multi-scale problems of dynamic rupture, radiated wave propagation, and site effects into an all-in-one model using a three-dimensional, fourth-order, staggered-grid, finite-difference method. The method explains strong ground motions as products of complex systems that can be modified according to a variety of fine-scale rupture scenarios and friction models. A series of such deterministic earthquake scenarios can shed light on the kind of damage that would result and where it would be located.

Effects of foundation flexibility on seismic demands of asymmetric buildings subject to near-fault ground motions

  • Atefatdoost, Gholam Reza;JavidSharifi, Behtash;Shakib, Hamzeh
    • Structural Engineering and Mechanics
    • /
    • 제66권5호
    • /
    • pp.637-648
    • /
    • 2018
  • When the centers of mass and stiffness of a building do not coincide, the structure experiences torsional responses. Such systems can consist of the underlying soil and the super-structure. The underlying soil may modify the earthquake input motion and change structural responses. Specific effects of the input motion shall also not be ignored. In this study, seismic demands of asymmetric buildings considering soil-structure interaction (SSI) under near-fault ground motions are evaluated. The building is modeled as an idealized single-story structure. The soil beneath the building is modeled by non-linear finite elements in the two states of loose and dense sands both compared with the fixed-base state. The infinite boundary conditions are modelled using viscous boundary elements. The effects of traditional and yield displacement-based (YDB) approaches of strength and stiffness distributions are considered on seismic demands. In the YDB approach, the stiffness considered in seismic design depends on the strength. The results show that the decrease in the base shear considering soft soil induced SSI when the YDB approach is assumed results only in the center of rigidity to control torsional responses. However, for fixed-base structures and those on dense soils both centers of strength and rigidity are controlling.

기초부 주변토체의 영향을 포함한 지진하중을 받는 교량의 통합된 동적거동분석 (Dynamic Responses of a Whole Bridge System under Earthquakes including the Effect of Foundation nearby Soil-layers)

  • 마호성;박인준;박병진
    • 한국재난관리표준학회지
    • /
    • 제1권2호
    • /
    • pp.79-85
    • /
    • 2008
  • 본 연구는 지진이 발생한 경우, 교량이 위치하고 있는 기초부 주변토체의 영향을 포함하고 그 위에 위치한 교량시스템의 동적거동을 예측하여 결과적으로 전체적 교량시스템의 내진거동을 분석하기 위한 통합된 새로운 방법론(Unified Dynamic Analysis Method)에 대하여 제안하고자 한다. 주변토체의 영향을 포함한 교량의 내진거동을 분석하는 통합된 방법론은 교량의 내진평가시에 적절하게 사용 될 수 있다는 것을 밝혔다. 본 방법론을 이용시 다중입력파에 대한 영향분석도 용이할 수 있다.

  • PDF

On the variability of strong ground motions recorded from Vrancea earthquakes

  • Pavel, Florin;Vacareanu, Radu;Arion, Cristian;Neagu, Cristian
    • Earthquakes and Structures
    • /
    • 제6권1호
    • /
    • pp.1-18
    • /
    • 2014
  • The main focus of this paper is the analysis of the different components of the variability for strong ground motions recorded from earthquakes produced by the Vrancea subcrustal seismic source. The analysis is performed for two ground motion prediction equations: Youngs et al. (1997) and Zhao et al. (2006), recommended within the SHARE project for the Vrancea subcrustal seismic source and which are proposed in the work of Delavaud et al. (2012) and graded best in Vacareanu et al. (2013c). The first phase of the analysis procedure consists of a grading procedure. In the second phase, the single station sigma procedure is applied for both attenuation models in order to reduce some parts of ground motion models' variability produced by the ergodic assumption. The strong ground motion database which is used throughout the study consists of over 400 accelerograms recorded from 9 Vrancea intermediate-depth seismic events. The results of the single station sigma analysis show significant reduction of the standard deviations, especially in the case of the Youngs et al. (1997) attenuation model, which is also graded better than the other selected GMPE.

Seismic performance comparison of existing public facilities strengthened with RC jacketing and steel bracing

  • Zu Irfan;Abdullah Abdullah;Azmeri Azmeri;Moch. Afiffuddin;Rifqi Irvansyah
    • Earthquakes and Structures
    • /
    • 제25권1호
    • /
    • pp.43-56
    • /
    • 2023
  • Banda Aceh is one of the areas that sustains the most damage during a natural disaster because it contains so many houses, office buildings, public facilities, and schools. Public structures in coastal areas are highly susceptible to earthquakes, resulting in high casualties and property damage. Several public structures were reconstructed during the reconstruction and rehabilitation period. Because this building is located in an area with a high risk of earthquakes, its capacity must be analyzed initially. Additionally, history indicates that Aceh Province has been struck by numerous earthquakes, including the largest ever recorded in 1983 and the most recent earthquake with a magnitude of 9.3 SR on December 26, 2004. The city of Banda Aceh was devastated by this earthquake, which was followed by a tsunami. The possibility of a large earthquake in Banda Aceh City necessitates that the structures constructed there be resistant to seismic risk. This study's objective was to evaluate the seismic performance of the existing building by applying the method of strengthening the structure in the form of jacketing columns and the addition of steel bracing in order to estimate the performance of the structure using multiple ground motions. Therefore, several public buildings must be analyzed to determine the optimal seismic retrofitting technique.

Seismic risk assessment of staggered wall system structures

  • Kim, Jinkoo;Baek, Donggeol
    • Earthquakes and Structures
    • /
    • 제5권5호
    • /
    • pp.607-624
    • /
    • 2013
  • In this study the seismic risk assessments of six- and twelve-story staggered wall system structures with three different structural variations were performed. The performances of staggered wall structures with added columns along the central corridor and the structures with their first story walls replaced by beams and columns were compared with those of the regular staggered wall structures. To this end incremental dynamic analyses were carried out using twenty two pairs of earthquake records to obtain the failure probabilities for various intensity of seismic load. The seismic risk for each damage state was computed based on the fragility analysis results and the probability of occurrence of earthquake ground motions. According to the analysis results, it was observed that the structures with added columns along the central corridor showed lowest probability of failure and seismic risk. The structures with their first story walls replaced by beams and columns showed lowest margin for safety.

Selecting and scaling ground motion time histories according to Eurocode 8 and ASCE 7-05

  • Ergun, Mustafa;Ates, Sevket
    • Earthquakes and Structures
    • /
    • 제5권2호
    • /
    • pp.129-142
    • /
    • 2013
  • Linear and nonlinear time history analyses have been becoming more common in seismic analysis and design of structures with advances in computer technology and earthquake engineering. One of the most important issues for such analyses is the selection of appropriate acceleration time histories and matching these histories to a code design acceleration spectrum. In literature, there are three sources of acceleration time histories: artificial records, synthetic records obtained from seismological models and accelerograms recorded in real earthquakes. Because of the increase of the number of strong ground motion database, using and scaling real earthquake records for seismic analysis has been becoming one of the most popular research issues in earthquake engineering. In general, two methods are used for scaling actual earthquake records: scaling in time domain and frequency domain. The objective of this study is twofold: the first is to discuss and summarize basic methodologies and criteria for selecting and scaling ground motion time histories. The second is to analyze scaling results of time domain method according to ASCE 7-05 and Eurocode 8 (1998-1:2004) criteria. Differences between time domain method and frequency domain method are mentioned briefly. The time domain scaling procedure is utilized to scale the available real records obtained from near fault motions and far fault motions to match the proposed elastic design acceleration spectrum given in the Eurocode 8. Why the time domain method is preferred in this study is stated. The best fitted ground motion time histories are selected and these histories are analyzed according to Eurocode 8 (1998-1:2004) and ASCE 7-05 criteria. Also, characteristics of both near fault ground motions and far fault ground motions are presented by the help of figures. Hence, we can compare the effects of near fault ground motions on structures with far fault ground motions' effects.