• Title/Summary/Keyword: seismic loss

Search Result 197, Processing Time 0.032 seconds

Correlation of Seismic Loss Functions Based on Stories and Core Locations in Vertical-Irregular Structures (연층을 갖는 수직 비정형 건축물의 층수 및 코어 위치에 따른 지진손실함수 상관관계 분석)

  • Hahn, SangJin;Shim, JungEun;Jeong, MinJae;Cho, JaeHyun;Kim, JunHee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.149-158
    • /
    • 2024
  • Piloti-type structures with vertical irregularity are vulnerable to earthquakes due to the soft structure of the first story. Structural characteristics of buildings can significantly affect the seismic loss function, calculated based on seismic fragility, and therefore need to be considered. This study investigated the effects of the number of stories and core locations on the seismic loss function of piloti-type buildings in Korea. Twelve analytical models were developed considering two variations: three stories (4-story, 5-story, and 6-story) and four core locations (center core, x-eccentric core, y-eccentric core, and xy-eccentric core). The interstory drift ratio and peak floor acceleration were assessed through incremental dynamic analysis using 44 earthquake records, and seismic fragility was derived. Seismic loss functions were calculated and compared using the derived seismic fragility and repair cost ratio of each component. The results indicate that the seismic loss function increases with more stories and when the core is eccentrically located in the piloti-type structure model. Therefore, the uncertainty due to the number of stories and core location should be considered when deriving the seismic loss function of piloti-type structures.

Applications of Seismic Disaster Simulation Technology on Risk Management

  • Yeh, Chin-Hsun
    • 한국방재학회:학술대회논문집
    • /
    • 2010.02a
    • /
    • pp.16-24
    • /
    • 2010
  • This paper introduces the applications of Taiwan Earthquake Loss Estimation System (TELES), which is developed by the National Center for Research on Earthquake Engineering (NCREE). Seismic disaster simulation technology (SDST) integrates geographical information system to assess the distribution of ground shaking intensity, ground failure probability, building damages, casualties, post-quake fires, debris, lifeline interruptions, economic losses, etc. given any set of seismic source parameters. The SDST may integrate with Taiwan Rapid Earthquake Information Release System (TREIRS) developed by Central Weather Bureau (CWB) to obtain valuable information soon after large earthquakes and to assist in decision-making processes to dispatch rescue and medical resources more efficiently. The SDST may also integrate with probabilistic seismic source model to evaluate various kinds of risk estimates, such as average annual loss, probable maximum loss in one event, and exceeding probability curves of various kinds of losses, to help proposing feasible countermeasures and risk management strategies.

  • PDF

Annual Loss Probability Estimation of Steel Moment-Resisting Frames(SMRFs) using Seismic Fragility Analysis (지진취약도를 통한 철골모멘트골조의 연간 손실 평가)

  • Jun, Saemee;Shin, Dong-Hyeon;Kim, Hyung-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.6
    • /
    • pp.517-524
    • /
    • 2014
  • The ultimate goal of seismic design is to reduce the probable losses or damages occurred during an expected earthquake event. To achieve this goal, this study represents a procedure that can estimate annual loss probability of a structure damaged by strong ground motion. First of all, probabilistic seismic performance assessment should be performed using seismic fragility analyses that are presented by a cumulative distribution function of the probability in each exceedance structural damage state. A seismic hazard curve is then derived from an annual frequency of exccedance per each ground motion intensity. An annual loss probability function is combined with seismic fragility analysis results and seismic hazard curves. In this paper, annual loss probabilities are estimated by the structural fragility curve of steel moment-resisting frames(SMRFs) in San Francisco Bay, USA, and are compared with loss estimation results obtained from the HAZUS methodology. It is investigated from the comparison that seismic losses of the SMRFs calculated from the HAZUS method are conservatively estimated. The procedure presented in this study could be effectively used for future studies related with structural seismic performance assessment and annual loss probability estimation.

Seismic probabilistic risk assessment of weir structures considering the earthquake hazard in the Korean Peninsula

  • Alam, Jahangir;Kim, Dookie;Choi, Byounghan
    • Earthquakes and Structures
    • /
    • v.13 no.4
    • /
    • pp.421-427
    • /
    • 2017
  • Seismic safety evaluation of weir structure is significant considering the catastrophic economical consequence of operational disruption. In recent years, the seismic probabilistic risk assessment (SPRA) has been issued as a key area of research for the hydraulic system to mitigate and manage the risk. The aim of this paper is to assess the seismic probabilistic risk of weir structures employing the seismic hazard and the structural fragility in Korea. At the first stage, probabilistic seismic hazard analysis (PSHA) approach is performed to extract the hazard curve at the weir site using the seismic and geological data. Thereafter, the seismic fragility that defines the probability of structural collapse is evaluated by using the incremental dynamic analysis (IDA) method in accordance with the four different design limit states as failure identification criteria. Consequently, by combining the seismic hazard and fragility results, the seismic risk curves are developed that contain helpful information for risk management of hydraulic structures. The tensile stress of the mass concrete is found to be more vulnerable than other design criteria. The hazard deaggregation illustrates that moderate size and far source earthquakes are the most likely scenario for the site. In addition, the annual loss curves for two different hazard source models corresponding to design limit states are extracted.

Stochastic value index for seismic risk management of existing lifelines

  • Koike, Takeshi;Imai, Toshio
    • Structural Engineering and Mechanics
    • /
    • v.32 no.1
    • /
    • pp.147-165
    • /
    • 2009
  • This study proposes a certain measure or investment strategy for decision making associated with seismic retrofitting. This strategy reduces the risk of a large-scale malfunction such as water supply loss under seismic risks. The authors developed a stochastic value index that will be used in the overall evaluation of social benefit, income gain, life cycle costs and failure compensation associated with existing lifeline systems damaged by an earthquake during the remaining service period. Optimal seismic disaster prevention investment of deteriorated lifeline systems is discussed. Finally, the present study provides a performance-based design method for seismic retrofitting strategies of existing lifelines which are carried out using the target probabilities of value loss and structural failure.

Intensity measure-based probabilistic seismic evaluation and vulnerability assessment of ageing bridges

  • Yazdani, Mahdi;Jahangiri, Vahid
    • Earthquakes and Structures
    • /
    • v.19 no.5
    • /
    • pp.379-393
    • /
    • 2020
  • The purpose of this study is to first evaluate the seismic behavior of ageing arch bridges by using the Intensity Measure - based demand and DCFD format, which is referred to as the fragility-hazard format. Then, an investigation is performed for their seismic vulnerability. Analytical models are created for bridges concerning different features and these models are subjected to Incremental Dynamic Analysis (IDA) analysis using a set of 22 earthquake records. The hazard curve and results of IDA analysis are employed to evaluate the return period of exceeding the limit states in the IM-based probabilistic performance-based context. Subsequently, the fragility-hazard format is used to assess factored demand, factored capacity, and the ratio of the factored demand to the factored capacity of the models with respect to different performance objectives. Finally, the vulnerability curves are obtained for the investigated bridges in terms of the loss ratio. The results revealed that decreasing the span length of the unreinforced arch bridges leads to the increase in the return period of exceeding various limit states and factored capacity and decrease in the displacement demand, the probability of failure, the factored demand, as well as the factored demand to factored capacity ratios, loss ratio, and seismic vulnerability. Finally, it is derived that the probability of the need for rehabilitation increases by an increase in the span length of the models.

Displacement Ductility Based Seismic Performance Evaluation of Circular RC Bridge Piers (변위연성도 기반 원형철근콘크리트 교각의 내진성능 평가)

  • Park, Chang-Kyu;Lee, Dae-Hyoung;Yun, Sang-Chul;Chung, Young-Soo
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.276-283
    • /
    • 2006
  • Korea is considered to be immune from the earthquake hazard because it is located far away from the active fault. However, recent earthquake caused a loss of lives and economical loss worldwide. Hence there has been raised an importance of the earthquake resistant design for various infrastructures. In this research, the seismic design and evaluation criterion for RC bridge pier were proposed from the experimental results of 82 circular RC bridge piers tested in domestic and aboard. New seismic criterion was introduced the limited ductile design provision suitable to Korean peninsula, which would be classified as a low or moderate seismic region. In addition, further important topic for the seismic safety of RC bridge piers in Korea is the seismic performance enhancement of RC bridge piers, which were designed and constructed before the 1992 seismic design provision. Therefore, the proposed seismic performance evaluation criterion could be very useful to judge seismic retrofit need or not according to the residual seismic performance of the RC bridge piers. Also, it could reduce an uncertainty for the safety of the infrastructure under earthquakes.

  • PDF

Viaduct seismic response under spatial variable ground motion considering site conditions

  • Derbal, Rachid;Benmansour, Nassima;Djafour, Mustapha;Matallah, Mohammed;Ivorra, Salvador
    • Earthquakes and Structures
    • /
    • v.17 no.6
    • /
    • pp.557-566
    • /
    • 2019
  • The evaluation of the seismic hazard for a given site is to estimate the seismic ground motion at the surface. This is the result of the combination of the action of the seismic source, which generates seismic waves, the propagation of these waves between the source and the site, and site local conditions. The aim of this work is to evaluate the sensitivity of dynamic response of extended structures to spatial variable ground motions (SVGM). All factors of spatial variability of ground motion are considered, especially local site effect. In this paper, a method is presented to simulate spatially varying earthquake ground motions. The scheme for generating spatially varying ground motions is established for spatial locations on the ground surface with varying site conditions. In this proposed method, two steps are necessary. Firstly, the base rock motions are assumed to have the same intensity and are modelled with a filtered Tajimi-Kanai power spectral density function. An empirical coherency loss model is used to define spatial variable seismic ground motions at the base rock. In the second step, power spectral density function of ground motion on surface is derived by considering site amplification effect based on the one dimensional seismic wave propagation theory. Several dynamics analysis of a curved viaduct to various cases of spatially varying seismic ground motions are performed. For comparison, responses to uniform ground motion, to spatial ground motions without considering local site effect, to spatial ground motions with considering coherency loss, phase delay and local site effects are also calculated. The results showed that the generated seismic signals are strongly conditioned by the local site effect. In the same sense, the dynamic response of the viaduct is very sensitive of the variation of local geological conditions of the site. The effect of neglecting local site effect in dynamic analysis gives rise to a significant underestimation of the seismic demand of the structure.

Seismic fragility curves using pulse-like and spectrally equivalent ground-motion records

  • Surana, Mitesh
    • Earthquakes and Structures
    • /
    • v.19 no.2
    • /
    • pp.79-90
    • /
    • 2020
  • 4- and 8-storey reinforced-concrete frame buildings are analyzed under the suites of the near-fault pulse-like, and the corresponding spectrally equivalent far-fault ground-motion records. Seismic fragility curves for the slight, moderate, extensive, and complete damage states are developed, and the damage probability matrices, and the mean loss ratios corresponding to the Design Basis Earthquake and the Maximum Considered Earthquake hazard levels are compared, for the investigated buildings and sets of ground-motion records. It is observed that the spectrally equivalent far-fault ground-motion records result in comparable estimates of the fragility curve parameters, as that of the near-fault pulse-like ground-motion records. As a result, the derived damage probability matrices and mean loss ratios using two suites of ground-motion records differ only marginally (of the order of ~10%) for the investigated levels of seismic hazard, thus, implying the potential for application of the spectrally equivalent ground-motion records, for seismic fragility and risk assessment at the near-fault sites.

Insights from existing earthquake loss assessment research in Croatia

  • Hadzima-Nyarko, Marijana;Sipos, Tanja Kalman
    • Earthquakes and Structures
    • /
    • v.13 no.4
    • /
    • pp.365-375
    • /
    • 2017
  • Seismic risk management has two main technical aspects: to recommend the construction of high-performance buildings and other structures using earthquake-resistant designs or evaluate existing ones, and to prepare emergency plans using realistic seismic scenarios. An overview of seismic risk assessment methodologies in Croatia is provided with details regarding the components of the assessment procedures: hazard, vulnerability and exposure. For Croatia, hazard is presented with two maps and it is expressed in terms of the peak horizontal ground acceleration during an earthquake, with the return period of 95 or 475 years. A standard building typology catalogue for Croatia has not been prepared yet, but a database for the fourth largest city in Croatia is currently in its initial stage. Two methods for earthquake vulnerability assessment are applied and compared. The first is a relatively simple and fast analysis of potential seismic vulnerability proposed by Croatian researchers using damage index (DI) as a numerical value indicating the level of structural damage, while the second is the Macroseismic method.