• 제목/요약/키워드: seismic hazard assessment

검색결과 142건 처리시간 0.02초

Seismic risk investigation for reinforced concrete buildings in Antalya, Turkey

  • Kepenek, Engin;Korkmaz, Kasim A.;Gencel, Ziya
    • Computers and Concrete
    • /
    • 제26권3호
    • /
    • pp.203-211
    • /
    • 2020
  • Turkey is located in one of the most seismically active regions of in Europe. The majority of the population living in big cities are at high seismic risk due to insufficient structural resistance of the existing buildings. Such a seismic risk brings the need for a comprehensive seismic evaluation based on the risk analysis in Turkey. Determining the seismic resistance level of existing building stock against the earthquakes is the first step to reduce the damages in a possible earthquake. Recently in January 2020, the Elazig earthquake brought the importance of the issue again in the public. However, the excessive amount of building stock, labor, and resource problems made the implementation phase almost impossible and revealed the necessity to carry out alternative studies on this issue. This study aims for a detailed investigation of residential buildings in Antalya, Turkey. The approach proposed here can be considered an improved state of building survey methods previously identified in Turkey's Design Code. Antalya, Turkey's fifth most populous city, with a population over 2.5 Million, was investigated as divided into sub-regions to understand the vulnerability, and a threshold value found for the study area. In this study, 26,610 reinforced concrete buildings between 1 to 7 stories in Antalya were examined by using the rapid visual assessment method. A specific threshold value for the city of Antalya was determined with the second level examination and statistical methods carried out in the determined sub-region. With the micro zonation process, regions below the threshold value are defined as the priority areas that need to be examined in detail. The developed methodology can be easily calibrated for application in other cities and can be used to determine new threshold values for those cities.

Development of comprehensive earthquake loss scenarios for a Greek and a Turkish city: seismic hazard, geotechnical and lifeline aspects

  • Pitilakis, Kyriazis D.;Anastasiadis, Anastasios I.;Kakderi, Kalliopi G.;Manakou, Maria V.;Manou, Dimitra K.;Alexoudi, Maria N.;Fotopoulou, Stavroula D.;Argyroudis, Sotiris A.;Senetakis, Kostas G.
    • Earthquakes and Structures
    • /
    • 제2권3호
    • /
    • pp.207-232
    • /
    • 2011
  • The development of reliable earthquake mitigation plans and seismic risk management procedures can only be based on the establishment of comprehensive earthquake hazard and loss scenarios. Two cities, Grevena (Greece) and D$\ddot{u}$zce (Turkey), were used as case studies in order to apply a comprehensive methodology for the vulnerability and loss assessment of lifelines. The methodology has the following distinctive phases: detailed inventory, identification of the typology of each component and system, evaluation of the probabilistic seismic hazard, geotechnical zonation, ground response analysis and estimation of the spatial distribution of seismic motion for different seismic scenarios, vulnerability analysis of the exposed elements at risk. Estimating adequate earthquake scenarios for different mean return periods, and selecting appropriate vulnerability functions, expected damages of the water and waste water systems in D$\ddot{u}$zce and of the roadway network and waste water system of Grevena are estimated and discussed; comparisons with observed earthquake damages are also made in the case of D$\ddot{u}$zce, proving the reliability and the efficiency of the proposed methodology. The results of the present study constitute a sound basis for the development of efficient loss scenarios for lifelines and infrastructure facilities in seismic prone areas. The first part of this paper, concerning the estimation of the seismic ground motions, has been utilized in the companion paper by Kappos et al. (2010) in the same journal.

Probabilistic seismic demand assessment of self-centering concrete frames under mainshock-aftershock excitations

  • Song, Long L.;Guo, Tong;Shi, Xin
    • Steel and Composite Structures
    • /
    • 제33권5호
    • /
    • pp.641-652
    • /
    • 2019
  • This paper investigates the effect of aftershocks on the seismic performance of self-centering (SC) prestressed concrete frames using the probabilistic seismic demand analysis methodology. For this purpose, a 4-story SC concrete frame and a conventional reinforced concrete (RC) frame are designed and numerically analyzed through nonlinear dynamic analyses based on a set of as-recorded mainshock-aftershock seismic sequences. The peak and residual story drifts are selected as the demand parameters. The probabilistic seismic demand models of the SC and RC frames are compared, and the SC frame is found to have less dispersion of peak and residual story drifts. The results of drift demand hazard analyses reveal that the SC frame experiences lower peak story drift hazards and significantly reduced residual story drift hazards than the RC frame when subjected to the mainshocks only or the mainshock-aftershock sequences, which demonstrates the advantages of the SC frame over the RC frame. For both the SC and RC frames, the influence of as-recorded aftershocks on the drift demand hazards is small. It is shown that artificial aftershocks can produce notably increased drift demand hazards of the RC frame, while the incremental effect of artificial aftershocks on the drift demand hazards of the SC frame is much smaller. It is also found that aftershock polarity does not influence the drift demand hazards of both the SC and RC frames.

Seismic loss-of-support conditions of frictional beam-to-column connections

  • Demartino, Cristoforo;Monti, Giorgio;Vanzi, Ivo
    • Structural Engineering and Mechanics
    • /
    • 제61권4호
    • /
    • pp.527-538
    • /
    • 2017
  • The evaluation of the loss-of-support conditions of frictional beam-to-column connections using simplified numerical models describing the transverse response of a portal-like structure is presented in this paper considering the effects of the seismic-hazard disaggregation. Real earthquake time histories selected from European Strong-motion Database (ESD) are used to show the effects of the seismic-hazard disaggregation on the beam loss-of-support conditions. Seismic events are classified according to different values of magnitudes, epicentral distances and soil conditions (stiff or soft soil) highlighting the importance of considering the characteristics of the seismic input in the assessment of the loss-of-support conditions of frictional beam-to-column connections. A rigid and an elastic model of a frame of a precast industrial building (2-DoF portal-like model) are presented and adopted to find the minimum required friction coefficient to avoid sliding. Then, the mean value of the minimum required friction coefficient with an epicentral distance bin of 10 km is calculated and fitted with a linear function depending on the logarithm of the epicentral distance. A complete parametric analysis varying the horizontal and vertical period of vibration of the structure is performed. Results show that the loss-of-support condition is strongly influenced by magnitude, epicentral distance and soil conditions determining the frequency content of the earthquake time histories and the correlation between the maxima of the horizontal and vertical components. Moreover, as expected, dynamic characteristics of the structure have also a strong influence. Finally, the effect of the column nonlinear behavior (i.e. formation of plastic hinges at the base) is analyzed showing that the connection and the column are a series system where the maximum force is limited by the element having the minimum strength. Two different longitudinal reinforcement ratios are analyzed demonstrating that the column strength variation changes the system response.

스마트 아웃리거 댐퍼시스템의 멀티해저드 저항성능평가 (Performance assessment of multi-hazard resistance of Smart Outrigger Damper System)

  • 김현수
    • 한국산학기술학회논문지
    • /
    • 제19권5호
    • /
    • pp.139-145
    • /
    • 2018
  • 아웃리거 시스템은 지진이나 풍하중에 의한 동적 응답을 줄이기 위하여 고층 건물의 횡방향 강성을 증가시키는데 널리 사용되고 있다. 풍하중과 지진하중의 동적 특성은 매우 다르기 때문에 스마트 진동 제어 시스템이 아웃리거 시스템과 함께 사용된다면 두 가지 동적 하중에 대해서 효과적으로 사용될 수 있을 것이다. 본 논문에서는 아웃리거 댐퍼 시스템 기반 멀티 해저드 적응형 스마트 구조 제어 시스템에 대한 연구를 수행하였다. 스마트 아웃리거 댐퍼 시스템을 개발하기 위하여 MR 댐퍼를 사용하였다. 수치 해석을 위해 미국에 있는 LA, 찰스턴, 앵커리지의 세 도시에 대한 멀티 해저드 지진하중과 풍하중을 생성하였다. 스마트 아웃리거 댐퍼 시스템의 최적 설계를 위하여 MR 댐퍼 용량에 대한 파라메터 연구를 수행하였다. 유전자 알고리즘으로 최적화된 퍼지 논리 제어기를 이용하여 스마트 제어 알고리즘을 개발하였다. 해석결과를 통하여 아웃리거 댐퍼 시스템 기반 적응형 스마트 구조제어 시스템이 풍하중과 지진하중의 멀티 해저드에 대해서 우수한 제어성능을 나타내는 것을 확인할 수 있었다.

Seismic Loading Requirements for Singapore Buildings

  • Pan, Tso-Chien
    • 한국지진공학회논문집
    • /
    • 제2권3호
    • /
    • pp.87-98
    • /
    • 1998
  • In this paper, the potential ground motion in terms of the peak ground accelerations(PGAs) due to long-distance Sumatra earthquakes is investigated for Singapore, following the probabilistic seismic hazard assessment a, pp.oach. The case investigated differs from a conventional one, in that few attenuation equations for long-distance major earthquakes are readily available. The attenuation relationships developed for other regions of the world are thus reviewed. It is found that the existing attenuation equations, when extrapolated to distant major earthquakes, tend to underestimate the PGAs. By comparing with the PGAs recorded over long distances at stations of the Japanese Meteorological Agency for major earthquakes in Japan, an attenuation equation is chosen for this study. With the chosen attenuation equation, the probability of PGAs exceeding selected levels for various exposure periods of time is then computed. The results show that at Singapore there is a 10% probability in 50 years for the PGA at rock sites to exceed 1.1% g. In view of the results and the associated uncertainties, a base shear coefficient of 1.5% is being recommended as the tentative seismic loading in Singapore. The tentative seismic loading reflects the design value of the notional horizontal load, equal to 1.5% of the characteristic building weigh as specified in the BS code, which usualy governs the design of most buildings in Singapors.

  • PDF

Numerical and random simulation procedure for preliminary local site characterization and site factor assessing

  • Beneldjouzi, Mohamed;Laouami, Nasser;Slimani, Abdennasser
    • Earthquakes and Structures
    • /
    • 제13권1호
    • /
    • pp.79-87
    • /
    • 2017
  • Seismic analysis of local site conditions is fundamental for a reliable site seismic hazard assessment. It plays a major role in mitigation of seismic damage potential through the prediction of surface ground motion in terms of amplitude, frequency content and duration. Such analysis requires the determination of the transfer function, which is a simple tool for characterizing a soil profile by estimating its vibration frequencies and its amplification potential. In this study, numerical simulations are carried out and are then combined with a statistical study to allow the characterization of design sites classified by the Algerian Building Seismic Code (RPA99, ver 2003), by average transfer functions. The mean transfer functions are thereafter used to compute RPA99 average site factors. In this regard, coming up seismic fields are simulated based on Power Spectral Density Functions (PSDF) defined at the rock basement. Results are also used to compute average site factor where, actual and synthetic time histories are introduced. In absence of measurement data, it is found that the proposed approach can be used for a better soil characterization.

Seismic vulnerability assessment of existing private RC constructions in northern Algeria

  • Belhamdi, Nourredine;Kibboua, Abderrahmane;Tahakourt, Abdelkader
    • Earthquakes and Structures
    • /
    • 제22권1호
    • /
    • pp.25-38
    • /
    • 2022
  • The RC private constructions represent a large part of the housing stock in the north part of Algeria. For various reasons, they are mostly built without any seismic considerations and their seismic vulnerability remains unknown for different levels of seismic intensity possible in the region. To support future seismic risk mitigation efforts in northern Algeria, this document assesses the seismic vulnerability of typical private RC constructions built after the Boumerdes earthquake (May 21, 2003) without considering existing seismic regulation, through the development of analytical fragility curves. The fragility curves are developed for four representative RC frames in terms of slight, moderate, extensive, and complete damage states suggested in HAZUS-MH 2.1, using nonlinear time history analyses. The numerical simulation of the nonlinear seismic response of the structures is performed using the SeismoStruct software. An original intensity measure (IM) is proposed and used in this study. It is the zone acceleration coefficient "A", through which the seismic hazard level is represented in the Algerian Seismic Regulations. The efficiency, practicality, and proficiency of the choice of IM are demonstrated. Incremental dynamic analyses are conducted under fifteen ground motion accelerograms compatible with the elastic target spectrum of the Algerian Seismic Regulations. In order to cover all the seismic zones of northern Algeria, the accelerograms are scaled from 0.1 to 2.5 in increments of 0.1. The results mainly indicate that private constructions built after the Boumerdes earthquake in the moderate and high seismic zones with four (04) or more storeys are highly vulnerable.

The effect of structural variability and local site conditions on building fragility functions

  • Sisi, Aida Azari;Erberik, Murat A.;Askan, Aysegul
    • Earthquakes and Structures
    • /
    • 제14권4호
    • /
    • pp.285-295
    • /
    • 2018
  • In this study, the effect of local site conditions (site class and site amplifications) and structural variability are investigated on fragility functions of typical building structures. The study area is chosen as Eastern Turkey. The fragility functions are developed using site-specific uniform hazard spectrum (UHS). The site-specific UHS is obtained based on simulated ground motions. The implementation of ground motion simulation into seismic hazard assessment has the advantage of investigating detailed local site effects. The typical residential buildings in Erzincan are represented by equivalent single degree of freedom systems (ESDOFs). Predictive equations are accomplished for structural seismic demands of ESDOFs to derive fragility functions in a straightforward manner. To study the sensitivity of fragility curves to site class, two sites on soft and stiff soil are taken into account. Two alternative site amplification functions known as generic and theoretical site amplifications are examined for these two sites. The reinforced concrete frames located on soft soil display larger fragilities than those on stiff soil. Theoretical site amplification mostly leads to larger fragilities than generic site amplification more evidently for reinforced concrete buildings. Additionally, structural variability of ESDOFs is generally observed to increase the fragility especially for rigid structural models.

변위연성도 기반 철근콘크리트 교각의 한정연성 내진 설계법과 성능평가 방법 (Limited-Ductile Seismic Design and Performance Assessment Method of RC Bridge Piers Based on Displacement Ductility)

  • 박창규;정영수;이대형
    • 콘크리트학회논문집
    • /
    • 제19권1호
    • /
    • pp.19-26
    • /
    • 2007
  • 최근까지 우리나라는 활성단층으로부터 멀리 떨어져 있기 때문에 지진에 대하여 안전지대라 여기었다. 그러나 최근의 강진으로 인간의 생명과 국가 경제에 막대한 손실을 발생시킨다는 것을 인지하게되었다. 따라서 최근에는 사회기간시설물에 대한 내지설계의 중요성이 부각되고 있다. 본 연구에서는 82개 원형단면과 54개의 사각단면의 철근콘크리트 교각에 대한 국내외의 실험 결과를 이용하여 철근콘크리트 교각의 내진설계와 성능평가에 대한 새로운 방법을 제안하였다. 제안된 새로운 내진설계법은 중저진지역에 속하는 우리나라의 실정에 맞도록 한정연성설계 개념을 도입하였다. 또한 우리나라의 철근콘크리트 교각의 내진성능에 있어 중요한 점은 1992년 내지설계규정이 도입되기 이전에 시공된 교각들의 내진성능 확보이다. 따라서 제안된 철근콘크리트 교각의 내진성능평가식은 기존 교각들의 내진 보수 및 보강 방안을 선정하는데 유익하게 사용될 수 있으리라 판단된다.