• 제목/요약/키워드: seismic ground excitation

검색결과 121건 처리시간 0.027초

Seismic mitigation of substation cable connected equipment using friction pendulum systems

  • Karami-Mohammadi, Reza;Mirtaheri, Masoud;Salkhordeh, Mojtaba;Mosaffa, Erfan;Mahdavi, Golsa;Hariri-Ardebili, Mohammad Amin
    • Structural Engineering and Mechanics
    • /
    • 제72권6호
    • /
    • pp.785-796
    • /
    • 2019
  • Power transmission substations are susceptible to potential damage under seismic excitations. Two of the major seismic failure modes in substation supplies are: the breakage of brittle insulator, and conductor end fittings. This paper presents efficient isolation strategies for seismically strengthening of a two-item set of equipment including capacitive voltage transformer (CVT) adjacent to a Lightning Arrester (LA). Two different strategies are proposed, Case A: implementation of base isolation at the base of the CVT, while the LA is kept fixed-base, and Case B: implementation of base isolation at the base of the LA, while the CVT is kept fixed-base. Both CVT and LA are connected to each other using a cable during the dynamic excitation. The probabilistic seismic behavior is measured by Incremental Dynamic Analysis (IDA), and a series of appropriate damage states are proposed. Finally, the fragility curves are derived for both the systems. It is found that Friction Pendulum System (FPS) isolator has the potential of decreasing flexural stresses caused by intense ground motions. The research has shown that when the FPS is placed under LA, i.e. Case B (as oppose to Case A), the efficiency of the system is improved in terms of reducing the forces and stresses at the bottom of the porcelain. Several parametric studies are also performed to determine the optimum physical properties of the FPS.

점탄성 감쇠기가 설치된 철골조 건물의 비탄성 해석 (Inelastic Analysis of Steel Frame Structures with Viscoelastic Damper)

  • 김진구;최현훈
    • 한국전산구조공학회논문집
    • /
    • 제13권2호
    • /
    • pp.271-278
    • /
    • 2000
  • 본 연구에서는 철골조 건물의 내진 보강 방법으로 점탄성 감쇠기의 적용과 효과에 대하여 성능에 기초한 내진 설계의 관점에서 연구하였다. 먼저 단자유도계 구조물을 대상으로 입력된 지진에너지의 소산에 대한 감쇠기의 효과에 대하여 연구하였다. 설계하중으로 중력하중을 적용한 5층 건물과 중력하중과 풍하중을 적용한 10층과 20층 건물에 대하여 해석을 수행하였다. 비선형 시간이력해석을 수행하기 위하여 성능에 기초한 내진설계기준(안)에 제시된 표준 설계응답스펙트럼을 각 지반종류와 성능목표에 대하여 구성하고, 이를 바탕으로 인공지진을 생성하였다. 해석결과에 따르면 층간변위를 성능기준으로 적용하였을 때 모든 모델이 연약지반(기능수행 성능목표)을 제외한 대부분의 지반조건에서 기준안에 제시된 성능목표를 만족하였다. 또한 적당한 위치에 점탄성 감쇠기를 설치함으로써 내진성능을 향상시키고 구조물이 탄성적으로 거동하도록 유도함을 보였다.

  • PDF

E-Shape 강재이력댐퍼의 수치모델과 기초격리구조물의 지진응답 (A Study on Base Isolation Performance and Phenomenological Model of E-Shape Steel Hysteretic Damper)

  • 황인호;주민관;심종성;이종세
    • 대한토목학회논문집
    • /
    • 제28권5A호
    • /
    • pp.685-690
    • /
    • 2008
  • 최근 대규모의 지진피해로 인해 내진설계에 대한 관심이 높아지면서, LRB(Lead Rubber Bearing), FPS(Friction Pendulum System) 등 다양한 지진격리장치에 대한 연구가 진행되고 있다. 본 연구에서 E-Shape 강재이력댐퍼를 이용한 지진격리장치의 성능 평가를 위해 E-Shape 댐퍼의 동적거동 실험을 수행하였으며, 이를 바탕으로 해석적 연구를 위한 수치모델을 제안하였다. 또한, 제안된 E-Shape 강재이력댐퍼의 수치모델을 6자유도를 가진 5층 건물에 적용하여 LRB 시스템과 이력거동을 비교하여 지진격리성능 평가를 수행하였다. 본 연구를 통하여 제안된 수치모델은 실제 E-Shape 강재이력댐퍼의 동적거동을 적절히 묘사할 수 있으며, E-Shape 강재이력댐퍼는 비선형 거동을 통한 에너지를 적절히 소산시킴으로서 기존 시스템과 비교하여 충분히 지진격리성능을 발휘할 수 있을 것으로 사료된다.

대각선 철골 중심가새골조의 지질동하에서의 동적불안정 거동 (Dynamic Instability of Diagonally Braced Steel Frames under Seismic Excitation)

  • 김정재;이철호
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 가을 학술발표회 논문집
    • /
    • pp.288-295
    • /
    • 2004
  • Concentrically braced steel frames are considered as being quite pone to soft-story response due to the degradation in brace compressive resistance after buckling under severe ground motions. When combined with the system P-Delta effects, collapse of the concentrically brsced frames by dynamic instability becomes highly probable. In this stidy, a new, relatively simple dynamic instability coefficient was proposed for diagonally braced steel flames by explicitly considering the strength degradation of the brace after buckling. Nonlinear dynamic analysis results showed that the dynamic instability coefficient proposed in this study predicted collapse limit state more consistently than the conventional one which ignores the strength degradation of the brace.

  • PDF

Stochastic finite element based seismic analysis of framed structures with open-storey

  • Manjuprasad, M.;Gopalakrishnan, S.;Rao, K. Balaji
    • Structural Engineering and Mechanics
    • /
    • 제15권4호
    • /
    • pp.381-394
    • /
    • 2003
  • While constructing multistorey buildings with reinforced concrete framed structures it is a common practice to provide parking space for vehicles at the ground floor level. This floor will generally consist of open frames without any infilled walls and is called an open-storey. From a post disaster damage survey carried out, it was noticed that during the January 26, 2001 Bhuj (Gujarat, India) earthquake, a large number of reinforced concrete framed buildings with open-storey at ground floor level, suffered extensive damage and in some cases catastrophic collapse. This has brought into sharp focus the need to carry out systematic studies on the seismic vulnerability of such buildings. Determination of vulnerability requires realistic structural response estimations taking into account the stochasticity in the loading and the system parameters. The stochastic finite element method can be effectively used to model the random fields while carrying out such studies. This paper presents the details of stochastic finite element analysis of a five-storey three-bay reinforced concrete framed structure with open-storey subjected to standard seismic excitation. In the present study, only the stochasticity in the system parameters is considered. The stochastic finite element method used for carrying out the analysis is based on perturbation technique. Each random field representing the stochastic geometry/material property is discretised into correlated random variables using spatial averaging technique. The uncertainties in geometry and material properties are modelled using the first two moments of the corresponding parameters. In evaluating the stochastic response, the cross-sectional area and Young' modulus are considered as independent random fields. To study the influence of correlation length of random fields, different correlation lengths are considered for random field discretisation. The spatial expectations and covariances for displacement response at any time instant are obtained as the output. The effect of open-storey is modelled by suitably considering the stiffness of infilled walls in the upper storey using cross bracing. In order to account for changes in soil conditions during strong motion earthquakes, both fixed and hinged supports are considered. The results of the stochastic finite element based seismic analysis of reinforced concrete framed structures reported in this paper demonstrate the importance of considering the effect of open-storey with appropriate support conditions to estimate the realistic response of buildings subjected to earthquakes.

Design aspects for minimizing the rotational behavior of setbacks buildings

  • Georgoussis, George K.
    • Earthquakes and Structures
    • /
    • 제10권5호
    • /
    • pp.1049-1066
    • /
    • 2016
  • An approximate analysis is presented for multi-story setback buildings subjected to ground motions. Setback buildings with mass and stiffness discontinuities are common in modern architecture and quite often they are asymmetric in plan. The proposed analysis provides basic dynamic data (frequencies and peak values of base resultant forces) and furthermore an overview of the building response during a ground excitation. The method is based on the concept of the equivalent single story system, which has been introduced by the author in earlier papers for assessing the response of uniform in height buildings. As basic quantities of the dynamic response of elastic setback buildings can be derived by analyzing simple systems, a structural layout of minimum elastic rotational response can be easily constructed. The behavior of such structural configurations, which is basically translational into the elastic phase, is also examined into the post elastic phase when the strength assignment of the various bents is based on a planar static analysis under a set of lateral forces simulating an equivalent 'seismic loading'. It is demonstrated that the almost concurrent yielding of all resisting elements preserves the translational response, attained at the end of the elastic phase, to the post elastic one.

SKY-BRIDGE로 연결된 건물의 진동제어 (Vibration Control of Buildings Connected by a Sky-Bridge)

  • 류진국;김진구
    • 한국전산구조공학회논문집
    • /
    • 제17권2호
    • /
    • pp.203-213
    • /
    • 2004
  • 본 연구에서는 최상층에 설치된 연결교량과 두 건물의 연결부에 점탄성감쇠기 (Viscoelastic Dampers, VED)를 설치하여 지진에 의한 연결된 건물의 응답을 저감하는 방법에 대해서 연구하였다. 제안된 방법의 적용성을 백작잡음하중에 대한 2자유도계 구조물의 RMS (root-mean-squared) 응답을 통하여 검토한 후, 점탄성감쇠기의 크기변화에 따른 응답 감소 효과를 분석하기 위해 다양한 층수의 연결된 구조물에 대하여 지진응답 해석을 수행하고, VED 설치 전후의 최대변위, 소성힌지 분포, 잔류변위 등을 비교하였다. 해석결과에 따르면, 구조물의 응답을 최소화하는 점탄성감최기의 적정 크기가 존재하며, 연결된 두 구조물의 고유주기의 차이가 증가할수록 점탄성감쇠기의 진동제어 효과가 커진다는 것을 알 수 있다.

Field Measurements of the New CCTV Tower in Beijing

  • Xu, Y.L.;Zhan, S.;Xia, H.;Xia, Y.;Zhang, N.
    • 국제초고층학회논문집
    • /
    • 제2권3호
    • /
    • pp.171-178
    • /
    • 2013
  • The emergence of a growing number of tall buildings, often with unusual shapes and innovative structural systems, has led to the realization of the need for and the importance of field measurements. The new China Central Television (CCTV) Tower in Beijing is one of tall buildings with a highly unusual shape and a complex structural system, requiring field measurements to identify its dynamic characteristics for the subsequent dynamic analysis of the tower under wind excitation, seismic-induced ground motion and traffic-induced ground motion. The structural system and the finite element model of the CCTV Tower are first introduced in this paper. The computed natural frequencies and mode shapes are then presented as a reference for the field measurement. After introducing the arrangement of the ambient vibration measurement, the field measured natural frequencies and damping ratios of the CCTV Tower are presented and the measured natural frequencies are finally compared with the computed ones. It was found that the structural damping ratios of the CCTV Tower are small and the computed natural frequencies are smaller than the measured ones by about 12~17%.

Real-time hybrid simulation of smart base-isolated raised floor systems for high-tech industry

  • Chen, Pei-Ching;Hsu, Shiau-Ching;Zhong, You-Jin;Wang, Shiang-Jung
    • Smart Structures and Systems
    • /
    • 제23권1호
    • /
    • pp.91-106
    • /
    • 2019
  • Adopting sloped rolling-type isolation devices underneath a raised floor system has been proved as one of the most effective approaches to mitigate seismic responses of the protected equipment installed above. However, pounding against surrounding walls or other obstructions may occur if such a base-isolated raised floor system is subjected to long-period excitation, leading to adverse effects or even more severe damage. In this study, real-time hybrid simulation (RTHS) is adopted to assess the control performance of a smart base-isolated raised floor system as it is an efficient and cost-effective experimental method. It is composed of multiple sloped rolling-type isolation devices, a rigid steel platen, four magnetorheological (MR) dampers, and protected high-tech equipment. One of the MR dampers is physically tested in the laboratory while the remainders are numerically simulated. In order to consider the effect of input excitation characteristics on the isolation performance, the smart base-isolated raised floor system is assumed to be located at the roof of a building and the ground level. Four control algorithms are designed for the MR dampers including passive-on, switching, modified switching, and fuzzy logic control. Six artificial spectrum-compatible input excitations and three slope angles of the isolation devices are considered in the RTHS. Experimental results demonstrate that the incorporation of semi-active control into a base-isolated raised floor system is effective and feasible in practice for high-tech industry.

Shake-table responses of a low-rise RC building model having irregularities at first story

  • Lee, Han Seon;Jung, Dong Wook;Lee, Kyung Bo;Kim, Hee Cheul;Lee, Kihak
    • Structural Engineering and Mechanics
    • /
    • 제40권4호
    • /
    • pp.517-539
    • /
    • 2011
  • This paper presents the seismic responses of a 1:5-scale five-story reinforced concrete building model, which represents a residential apartment building that has a high irregularity of weak story, soft story, and torsion simultaneously at the ground story. The model was subjected to a series of uni- and bi-directional earthquake simulation tests. Analysis of the test results leads to the following conclusions: (1) The model survived the table excitations simulating the design earthquake with the PGA of 0.187 g without any significant damages, though it was not designed against earthquakes; (2) The fundamental mode was the torsion mode. The second and third orthogonal translational modes acted independently while the torsion mode showed a strong correlation with the predominant translational mode; (3) After a significant excursion into inelastic behavior, this correlation disappeared and the maximum torsion and torsion deformation remained almost constant regardless of the intensity of the two orthogonal excitations; And, (4) the lateral resistance and stiffness of the critical columns and wall increased or decreased significantly with the large variation of acting axial forces caused by the high bi-directional overturning moments and rocking phenomena under the bi-directional excitations.