• 제목/요약/키워드: seismic gap

검색결과 114건 처리시간 0.028초

학교시설 내진보강공사 시 발생하는 하자 유형 및 하자 발생 요인 연구 (Investigating Defect Types and Causative Factors in the Seismic Retrofitting of Educational Facilities)

  • 김문식;정대교;박현정;김대영
    • 한국건축시공학회지
    • /
    • 제24권1호
    • /
    • pp.55-66
    • /
    • 2024
  • 2016년 9월 경주지진, 2017년 11월 발생한 포항지진 이후 공공시설중 상대적으로 내진성능 보급이 부진하였던 학교시설의 경우 2017년~2019년 사이 2배 이상 보급되었다. 내진보강공사가 공급됨으로 늘어난 비중에 하자가 발생할 가능성이 존재한다. 정부는 오는 2035년까지 모든 공공시설에 내진성능보강공사를 완료하고 학교시설의 경우 2029년까지 내진성능보급을 완료하는 것으로 확인되었다. 이에 따라 선행연구를 고찰해보았고 학교시설공사에서 발생하는 하자에 관련한 연구가 진행되는 것으로 확인되었다. 하지만 마감공사에서 발생하는 하자 예방에 대한 연구가 진행되고 있었으며, 학교시설의 내진보강공사에서 발생하는 하자에 관련한 연구는 부족한 실정이었다. 따라서 본 연구는 내진보강공사에서 발생하는 하자 유형들을 조사하고 해당 원인들을 분석하여 하자예방의 중점관리요소를 도출할 것이다. 또한 궁극적으로 하자 유형과 원인간의 관계를 분석하여 중점관리요소를 선정함으로써 향후 내진보강공사를 진행함에 있어 시공단계에서 하자를 예방할 수 있고, 보수비용을 저감하는데 기여할 것이다.

The effect of impact with adjacent structure on seismic behavior of base-isolated buildings with DCFP bearings

  • Bagheri, Morteza;Khoshnoudiana, Faramarz
    • Structural Engineering and Mechanics
    • /
    • 제51권2호
    • /
    • pp.277-297
    • /
    • 2014
  • Since the isolation bearings undergo large displacements in base-isolated structures, impact with adjacent structures is inevitable. Therefore, in this investigation, the effect of impact on seismic response of isolated structures mounted on double concave friction pendulum (DCFP) bearings subjected to near field ground motions is considered. A non-linear viscoelastic model of collision is used to simulate structural pounding more accurately. 2-, 4- and 8-story base-isolated buildings adjacent to fixed-base structures are modeled and the coupled differential equations of motion related to these isolated systems are solved in the MATLAB environment using the SIMULINK toolbox. The variation of seismic responses such as base shear, displacement in the isolation system and superstructure (top floor) is computed to study the impact condition. Also, the effects of variation of system parameters: isolation period, superstructure period, size of seismic gap between two structures, radius of curvature of the sliding surface and friction coefficient of isolator are contemplated in this study. It is concluded that the normalized base shear, bearing and top floor displacement increase due to impact with adjacent structure. When the distance between two structures decreases, the base shear and displacement increase comparing to no impact condition. Besides, the increase in friction coefficient difference also causes the normalized base shear and displacement in isolation system and superstructure increase in comparison with bi-linear hysteretic behavior of base isolation system. Totally, the comparison of results indicates that the changes in values of friction coefficient have more significant effects on 2-story building than 4- and 8-story buildings.

Self-control of high rise building L-shape in plan considering soil structure interaction

  • Farghaly, A.A.
    • Coupled systems mechanics
    • /
    • 제6권3호
    • /
    • pp.229-249
    • /
    • 2017
  • A new technique to mitigate irregular buildings with soil structure interaction (SSI) effect subjected to critical seismic waves is presented. The L-shape in plan irregular building for various reasons was selected, subjected to seismic a load which is a big problem for structural design especially without separation gap. The L-shape in plan building with different dimensions was chosen to study, with different rectangularity ratios and various soil kinds, to show the effect of the irregular building on the seismic response. A 3D building subjected to critical earthquake was analyzed by structural analysis program (SAP2000) fixed and with SSI (three types of soils were analyzed, soft, medium and hard soils) to find their effect on top displacement, base shear, and base torsion. The straining actions were appointed and the treatment of the effect of irregular shape under critical earthquake was made by using tuned mass damper (TMD) with different configurations with SSI and without. The study improve the success of using TMDs to mitigate the effect of critical earthquake on irregular building for both cases of study as fixed base and raft foundation (SSI) with different TMDs parameters and configurations. Torsion occurs when the L-shape in plan building subjected to earthquake which may be caused harmful damage. TMDs parameters which give the most effective efficiency in the earthquake duration must be defined, that will mitigate these effects. The parameters of TMDs were studied with structure for different rectangularity ratios and soil types, with different TMD configurations. Nonlinear time history analysis is carried out by SAP2000 with El Centro earthquake wave. The numerical results of the parametric study help in understanding the seismic behavior of L-shape in plan building with TMDs mitigation system.

Seismic poundings of multi-story buildings isolated by TFPB against moat walls

  • Shakouri, Ayoub;Amiri, Gholamreza Ghodrati;Miri, Zahra Sadat;Lak, Hamed Rajaei
    • Earthquakes and Structures
    • /
    • 제20권3호
    • /
    • pp.295-307
    • /
    • 2021
  • The gap provided between adjacent structures in the metropolitan cities is mostly narrow due to architectural and financial issues. Consequently, structural pounding occurs between adjacent structures during earthquakes. It causes damages, ranging from minor local to more severe ones, especially in the case of seismically isolated buildings, due to their higher displacements. However, due to the increased flexibility of isolated buildings, the problem could become more detrimental to such structures. The effect of the seismic pounding of moat walls on the response of buildings isolated by Triple Friction Pendulum Bearing (TFPB) is investigated in this paper. To this propose, two symmetric three-dimensional models, including single-story and five-story buildings, are modeled in Opensees. Nonlinear Time History Analyses (NTHA) are performed for seismic evaluation. Also, five different sizes with four different sets of friction coefficients are considered for base isolators to cover a whole range of base isolation systems with various geometry configurations and fundamental period. The results are investigated in terms of base shear, buildings' drift, and roof acceleration. Results indicated a profound effect of poundings against moat walls. In situations of potential pounding, in some cases, the influence of impact on seismic responses of multistory buildings was more remarkable.

Nonlinear finite element modeling of the self-centering steel moment connection with cushion flexural damper

  • Ali Nazeri;Reza Vahdani;Mohammad Ali Kafi
    • Structural Engineering and Mechanics
    • /
    • 제87권2호
    • /
    • pp.151-164
    • /
    • 2023
  • The latest earthquake's costly repairs and economic disruption were brought on by excessive residual drift. Self-centering systems are one of the most efficient ways in the current generation of seismic resistance system to get rid of and reduce residual drift. The mechanics and behavior of the self-centering system in response to seismic forces were impacted by a number of important factors. The amount of post-tensioning (PT) force, which is often employed for the standing posture after an earthquake, is the first important component. The energy dissipater element is another one that has a significant impact on how the self-centering system behaves. Using the damper as a replaceable and affordable tool and fuse in self-centering frames has been recommended to boost energy absorption and dampening of structural systems during earthquakes. In this research, the self-centering steel moment frame connections are equipped with cushion flexural dampers (CFDs) as an energy dissipator system to increase energy absorption, post-yielding stiffness, and ease replacement after an earthquake. Also, it has been carefully considered how to reduce permanent deformations in the self-centering steel moment frames exposed to seismic loads while maintaining adequate stiffness, strength, and ductility. After confirming the FE model's findings with an earlier experimental PT connection, the behavior of the self-centering connection using CFD has been surveyed in this study. The FE modeling takes into account strands preloading as well as geometric and material nonlinearities. In addition to contact and sliding phenomena, gap opening and closing actions are included in the models. According to the findings, self-centering moment-resisting frames (SF-MRF) combined with CFD enhance post-yielding stiffness and energy absorption with the least amount of permeant deformation in a certain CFD thickness. The obtained findings demonstrate that the effective energy dissipation ratio (β), is increased to 0.25% while also lowering the residual drift to less than 0.5%. Also, this enhancement in the self-centering connection with CFD's seismic performance was attained with a respectable moment capacity to beam plastic moment capacity ratio.

A shake table investigation on interaction between buildings in a row

  • Khatiwada, Sushil;Chouw, Nawawi
    • Coupled systems mechanics
    • /
    • 제2권2호
    • /
    • pp.175-190
    • /
    • 2013
  • Pounding damage has been observed frequently in major earthquakes in the form of aesthetic, minor or major structural cracks and collapse of buildings. Studies have identified a building located at one end of a row of buildings as very vulnerable to pounding damage, while buildings in the interior of the same row are assumed to be safer. This study presents the results of a shake table investigation of pounding between two and three buildings in a row. Two steel portal frames, one stiffer and another more flexible, were subjected to pounding against a frame with eight other configurations. Three pounding arrangements were considered, i.e., the reference frame (1) on the right of the second frame, (2) in the middle of two identical frames, and (3) on the right of two identical frames. Zero seismic gap was adopted for all tests. Five different ground motions are applied from both directions (right to left and left to right). The amplification of the maximum deflection due to pounding was calculated for each configuration. The results showed that, for the stiffer building in a row, row building pounding is more hazardous than pounding between only two buildings. The location of the stiffer frame, whether at the end or the middle of the row, did not have much effect on the degree of amplification observed. Additionally, for all cases considered, pounding caused less amplification for stronger ground motions, i.e., the ground motions that produced higher maximum deflection without pounding than other ground motions.

다목적연구로 반응도 제어장치의 제어봉에 대한 내진해석 (Seismic Analysis of Absorber Rod in KMRR Reactivity Control Mechanism)

  • 조영갑;유봉;김태룡;안규석
    • 전산구조공학
    • /
    • 제3권3호
    • /
    • pp.141-146
    • /
    • 1990
  • 본 연구에서는 다목적연구로 반응도제어장치의 제어봉에 대한 내진해석을 수행하였다. 해석모델은 물속에 잠겨있는 두개의 관(중성자흡수봉 및 유동관)이 동심축상에 있으며 부분적으로 중첩된 두 관끝단의 유체틈에 의해 서로 동적으로 연결되어 있다. 유체에 의한 동적질량을 고려한 고유진동수를 구하고 안전정지지진에 의해 발생하는 최대응력과 최대변위를 동위상 및 역위상 거동별로 각각 구하였다. 해석결과 최대응력은 허용치보다 작게 나타나 구조적인 건전성은 입증되었으나, 최대변위는 두 개의 관이 서로 부딪히고 중성자흡수봉은 주위의 다른 벽에도 부딪히는 현상을 수발함을 알 수 있었다.

  • PDF

Experimental and analytical evaluation of a low-cost seismic retrofitting method for masonry-infilled non-ductile RC frames

  • Srechai, Jarun;Leelataviwat, Sutat;Wongkaew, Arnon;Lukkunaprasit, Panitan
    • Earthquakes and Structures
    • /
    • 제12권6호
    • /
    • pp.699-712
    • /
    • 2017
  • This study evaluates the effectiveness of a newly developed retrofitting scheme for masonry-infilled non-ductile RC frames experimentally and by numerical simulation. The technique focuses on modifying the load path and yield mechanism of the infilled frame to enhance the ductility. A vertical gap between the column and the infill panel was strategically introduced so that no shear force is directly transferred to the column. Steel brackets and small vertical steel members were then provided to transfer the interactive forces between the RC frame and the masonry panel. Wire meshes and high-strength mortar were provided in areas with high stress concentration and in the panel to further reduce damage. Cyclic load tests on a large-scale specimen of a single-bay, single-story, masonry-infilled RC frame were carried out. Based on those tests, the retrofitting scheme provided significant improvement, especially in terms of ductility enhancement. All retrofitted specimens clearly exhibited much better performances than those stipulated in building standards for masonry-infilled structures. A macro-scale computer model based on a diagonal-strut concept was also developed for predicting the global behavior of the retrofitted masonry-infilled frames. This proposed model was effectively used to evaluate the global responses of the test specimens with acceptable accuracy, especially in terms of strength, stiffness and damage condition.

Cyclic tests and numerical study of composite steel plate deep beam

  • Hu, Yi;Jiang, Liqiang;Zheng, Hong
    • Earthquakes and Structures
    • /
    • 제12권1호
    • /
    • pp.23-34
    • /
    • 2017
  • Composite steel plate deep beam (CDB) is proposed as a lateral resisting member, which is constructed by steel plate and reinforced concrete (RC) panel, and it is connected with building frame through high-strength bolts. To investigate the seismic performance of the CDB, tests of two 1/3 scaled specimens with different length-to-height ratio were carried out under cyclic loads. The failure modes, load-carrying capacity, hysteretic behavior, ductility and energy dissipation were obtained and analyzed. In addition, the nonlinear finite element (FE) models of the specimens were established and verified by the test results. Besides, parametric analyses were performed to study the effect of length-to-height ratio, height-to-thickness ratio, material type and arrangement of RC panel. The experimental and numerical results showed that: the CDBs lost their load-carrying capacity because of the large out-of plane deformation and yield of the tension field formed on the steel plate. By increasing the length-to-height ratio of steel plate, the load-carrying capacity, elastic stiffness, ductility and energy dissipation capacity of the specimens were significantly enhanced. The ultimate loading capacity increased with increasing the length-to-height ratio of steel plate and yield strength of steel plate; and such capacity increased with decreasing of height-to-thickness ratio of steel plate and gap. Finally, a unified formula is proposed to calculate their ultimate loading capacity, and fitting formula on such indexes are provided for designation of the CDB.

SMART 유동혼합헤더집합체의 동수력 질량 특성 고찰 (Investigation of Hydrodynamic Mass Characteristic for Flow Mixing Header Assembly in SMART)

  • 이규만;안광현;이강헌;이재선
    • 한국압력기기공학회 논문집
    • /
    • 제16권1호
    • /
    • pp.30-36
    • /
    • 2020
  • In SMART, the flow mixing header assembly (FMHA) is used to mix the coolant flowing into the reactor core to maintain a uniform temperature. The FMHA is designed to have enough stiffness so the resonance with reactor internal structures does not occurs during the pipe break and the seismic accidents. Since the gap between the FMHA and the core support barrel assembly is very narrow compared with the diameter of FMHA, the hydrodynamic mass effect acting on the FMHA is not negligible. Therefore the hydrodynamic mass characteristics on the FMHA are investigated to consider the fluid and structure interaction effects. The result of modal analysis for the dry and underwater conditions, the natural frequency of primary vibration mode for the horizontal direction is reduced from 136.67 Hz to 43.76 Hz. Also the result of frequency response spectrum seismic analysis for the dry and underwater conditions, the maximum equivalent stress are increased from 13.89 MPa to 40.23 MPa. Therefore, reactor internal structures located in underwater condition shall consider carefully the hydrodynamic mass effects even though they have sufficient stiffness required for performing its functions under the dry condition.