• Title/Summary/Keyword: seismic excitations

Search Result 309, Processing Time 0.026 seconds

Influence of time delay and saturation capacity to the response of controlled structures under earthquake excitations

  • Pnevmatikos, Nikos G.;Gantes, Charis J.
    • Smart Structures and Systems
    • /
    • v.8 no.5
    • /
    • pp.449-470
    • /
    • 2011
  • During the last thirty years many structural control concepts have been proposed for the reduction of the structural response caused by earthquake excitations. Their research and implementation in practice have shown that seismic control of structures has a lot of potential but also many limitations. In this paper the importance of two practical issues, time delay and saturation effect, on the performance of controlled structures, is discussed. Their influence, both separately and in interaction, on the response of structures controlled by a modified pole placement algorithm is investigated. Characteristic buildings controlled by this algorithm and subjected to dynamic loads, such as harmonic signals and actual seismic events, are analyzed for a range of levels of time delay and saturation capacity of the control devices. The response reduction surfaces for the combined influence of time delay and force saturation of the controlled buildings are obtained. Conclusions regarding the choice of the control system and the desired properties of the control devices are drawn.

RESPONSE CONTROL OF 3D IRREGULAR BUILDINGS UNDER SEISMIC EXCITATIONS USING TLCD (TLCD를 이용한 지진하중을 받는 3차원 비정형 건축구조물의 응답제어)

  • 김홍진;김형섭;안상경
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.66-71
    • /
    • 2003
  • The semi-active TLCD system is investigated for control of responses of 3D irregular buildings under seismic excitations. The TLCD system is a special type of TMD system providing a performance similar to a TMD system but offers a number of practical advantages over the traditional TMD system. The equations of motion for the combined building and TLCD system are derived for multistory building structures with rigid floors and plan and elevation irregularities. Simulation results for control of two multistory moment-resisting space structures with vertical and plan irregularities show clearly that the semi-active TLCD control system reduces the responses of 3D irregular buildings subjected to earthquake ground motions efficiently.

  • PDF

Effects of Pounding and friction upon Bridge Motions under Seismic Excitations (충돌 및 가동단 마찰을 고려한 지진하중을 받는 교량의 거동분석)

  • 김상효
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.193-202
    • /
    • 1999
  • effect of pounding and friction between oscillators upon global response behaviors of a bridge system under seismic excitations are examined in this study. For convenience an idealized mechanical model is proposed which still retains the dynamic characteristics of bridge motions using multiple oscillators, Each oscillator is consisting of four degrees-of-freedom to implement the pounding between the adjacent oscillators and friction at movable supports, The impact element and bi-linear model are utilized for pounding and friction at movable supports. The impact element and bi-linear model are utilized for pounding and friction respectively. Also the effects of abutments are investigated by adding the addition oscillators consisting of two degrees-of-freedom. The effects of pounding and frictions are determined using the proposed model and the effect of the abutment is also verified, It is found that both pounding and friction affect the bridge responses significantly while the first pounding occurs between the abutment and the nearby oscillator.

  • PDF

Unseating Failure of Bridge Spans with Nonlnear Pier Motion under Seismic Excitations (교각 비선형 거동을 고려한 낙교위험분석)

  • 김상효
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.128-135
    • /
    • 1998
  • In this study, the unseating failure of the bridge spans under seismic excitations is examined by investigation the nonlinear response behaviors of the bridge system with reinforced concrete piers. To reduce the computational effort and to consider the effect of the foundation motions, a simplified 3 degree-of-freedom model is proposed, which retains the dynamic characteristics of the original bridge motions in concern. To imply the nonlinear behaviors of the RC piers to the system. a hysteresis model is utilized from the calculated force-deformation curve for the piers. The statistical characteristics of the maximum response displacements are obtained from the simulation results of 1000 time history analysis.

  • PDF

Constitutive models of concrete structures subjected to seismic shear

  • Laskar, Arghadeep;Lu, Liang;Qin, Feng;Mo, Y.L.;Hsu, Thomas T.C.;Lu, Xilin;Fan, Feng
    • Earthquakes and Structures
    • /
    • v.7 no.5
    • /
    • pp.627-645
    • /
    • 2014
  • Using OpenSees as a framework, constitutive models of reinforced, prestressed and prestressed steel fiber concrete found by the panel tests have been implemented into a finite element program called Simulation of Concrete Structures (SCS) to predict the seismic behavior of shear-critical reinforced and prestressed concrete structures. The developed finite element program was validated by tests on prestressed steel fiber concrete beams under monotonic loading, post tensioned precast concrete column under reversed cyclic loading, framed shear walls under reversed cyclic loading or shaking table excitations, and a seven-story wall building under shake table excitations. The comparison of analytical results with test outcomes indicates good agreement.

Comparisons of Behavioral Characteristics and Seismic Performance of Seismic Isolation Bearing Systems (면진용 교좌장치의 거동 특성과 내진 성능 비교)

  • 한규승;한경봉;박선규
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.4
    • /
    • pp.79-89
    • /
    • 2000
  • In this paper, the seismic analysis and the modeling techniques have been introduced for aseismic performances assessment, when seismic isolation bearings are applied on a real bridge. Nonlinear time-history analysis is carried out using finite element analysis program. In this study, EI Centro earthquake(1940, N00W), Mexico earthquake(1985, N90W), and earthquake simulation from modified SIMQKE are used as earthquake ground excitations. The seismic response of seismically isolated bridge is compared with that of a bridge using conventional Pot Bearings, after obtaining the displacements of the deck, the deformations of the piers, shear forces and moments of the bottoms of the piers. The analytical analysis results show that seismic isolation bearing, especially seismic isolation bearings with sliding mechanism, could reduce earthquake forces.

Study of seismic performance and favorable structural system of suspension bridges

  • Zhang, Xin-Jun;Zhang, Chao
    • Structural Engineering and Mechanics
    • /
    • v.60 no.4
    • /
    • pp.595-614
    • /
    • 2016
  • By taking the Runyang Highway Bridge over the Yangtze River with 1490 m main span as example, structural response of the bridge under the horizontal and vertical seismic excitations is investigated by the response spectrum and time-history analysis of MIDAS/Civil software respectively, the seismic behavior and the influence of structural nonlinearity on the seismic response of the bridge are revealed. Considering the aspect of seismic performance, the suitability of employing the suspension bridge in super long-span bridges is investigated as compared to the cable-stayed bridge and cable-stayed-suspension hybrid bridge with the similar main span. Furthermore, the effects of structural parameters including the span arrangement, the cable sag to span ratio, the side to main span ratio, the girder height, the central buckle and the girder support system etc on the seismic performance of the bridge are investigated by the seismic response spectrum analysis, and the favorable earthquake-resistant structural system of suspension bridges is also discussed.

Strengthening method using externally-bonded steel frames for promoting the seismic performance of existing buildings (기존 건축물 내진성능 향상을 위한 철골 골조 외부부착 보강공법)

  • Mauk, Ji-Wook;Park, Young-Mi;Park, Ki-Hong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.98-99
    • /
    • 2018
  • Seismic retrofitting technologies have been paid attention to structural engineers for rehabilitations of existing building structures vulnerable to seismic loading conditions. This paper introduces the traditional strengtheing method applying externally-bonded steel frames to column and beam elements, and compares with the improved scheme using the frames with additional energy dissipation systems. Throughout experimental studies, it was observed that the method can be effective for promoting the seismic performance of seismic force-resisting systems by guaranteeing strong column-weak beam mechanism. Compared to the traditional manner, it was found that the new scheme can be more efficient for confirming capacity design concept, while energy dissipation systems can provide additional damping effects corresponding to lateral deformation which occurs at seismic force-resisting systems exposed to seismic excitations.

  • PDF

Study of seismic performance of cable-stayed-suspension hybrid bridges

  • Zhang, Xin-Jun;Yu, Zhou-Jun
    • Structural Engineering and Mechanics
    • /
    • v.55 no.6
    • /
    • pp.1203-1221
    • /
    • 2015
  • By taking a cable-stayed-suspension hybrid bridge with main span of 1400 m as example, seismic response of the bridge under the horizontal and vertical seismic excitations is investigated numerically by response spectrum analysis and time history analysis, its seismic performance is discussed and compared to the cable-stayed bridge and suspension bridge with the same main span, and considering the aspect of seismic performance, the feasibility of using cable-stayed-suspension hybrid bridge in super long-span bridges is discussed. Under the horizontal seismic action, the effects of structural design parameters including the cable sag to span ratio, the suspension to span ratio, the side span length, the subsidiary piers in side spans, the girder supporting system and the deck form etc on the seismic performance of the bridge are investigated by response spectrum analysis, and the favorable values of these design parameters are proposed.

An equivalent linearization method for nonlinear systems under nonstationary random excitations using orthogonal functions

  • Younespour, Amir;Cheng, Shaohong;Ghaffarzadeh, Hosein
    • Structural Engineering and Mechanics
    • /
    • v.66 no.1
    • /
    • pp.139-149
    • /
    • 2018
  • Many practical engineering problems are associated with nonlinear systems subjected to nonstationary random excitations. Equivalent linearization methods are commonly used to seek for approximate solutions to this kind of problems. Compared to various approaches developed in the frequency and mixed time-frequency domains, though directly solving the system equation of motion in the time domain would improve computation efficiency, only limited studies are available. Considering the fact that the orthogonal functions have been widely used to effectively improve the accuracy of the approximated responses and reduce the computational cost in various engineering applications, an orthogonal-function-based equivalent linearization method in the time domain has been proposed in the current paper for nonlinear systems subjected to nonstationary random excitations. In the numerical examples, the proposed approach is applied to a SDOF system with a set-up spring and a SDOF Duffing oscillator subjected to stationary and nonstationary excitations. In addition, its applicability to nonlinear MDOF systems is examined by a 3DOF Duffing system subjected to nonstationary excitation. Results show that the proposed method can accurately predict the nonlinear system response and the formulation of the proposed approach allows it to be capable of handling any general type of nonstationary random excitations, such as the seismic load.