• 제목/요약/키워드: seismic excitations

검색결과 315건 처리시간 0.027초

연구용 원자로 내부에 설치되는 이차정지구동장치의 내진낙하성능 (Seismic Drop Performance for Second Shutdown Drive Mechanism Installed in Research Reactor)

  • 김상헌;김경호;선종오;조영갑;김정현;정택형;이관희
    • 한국소음진동공학회논문집
    • /
    • 제26권6_spc호
    • /
    • pp.697-704
    • /
    • 2016
  • The second shutdown drive mechanism (SSDM) that is classified into seismic category I as an active mechanical equipment shall maintain the structural integrity and its designed inherent safety functions during and/or after normal operation, anticipated operational occurrences, accidents and seismic occurrences. Therefore, not only a structural integrity assessment through numerical analyses but also a qualification test by using the prototype SSDM shall be conducted to verify the adequacy of the SSDM design. This paper describes a sort of seismic qualification test of the prototype SSDM to demonstrate that the structural integrity and operability (functionality) of SSDM are maintained during and/or after seismic excitations. From the results, this paper shows that the SSDM satisfies all design requirements without any malfunctions during and after the seismic test.

StLRB 지진격리장치를 적용한 교량의 거동특성과 비교분석 (Response Characters of Bridge Adopting StLRB)

  • 최승호;한경봉;박선규
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제8권1호
    • /
    • pp.139-146
    • /
    • 2004
  • 본 논문에서는 실제 교량에 지진격리장치를 적용하였을 때, 교량의 내진성능을 평가하기 위한 지진해석과 모델링 방법에 대하여 논하였다. 상용유한요소 해석 프로그램을 이용하여 비선형 시간이력 해석을 수행하였으며, 지진해석을 위하여 El Centro 지진 이력을 (1940, N00W) 사용하였다. 기존 받침을 적용한 경우와 여러 가지 지진격리장치를 적용한 경우로 나누어 해석하였으며, 교량의 변위와 교각의 변형 및 교각 하단부의 전단력과 모멘트를 상대 비교하였다. 해석 결과 지진격리 장치를 사용한 경우 기존 받침을 적용한 교량보다 지진시 거동이 훨씬 안정적으로 나타났으며, 특히 StLRB를 적용한 경우 받침의 마찰과 STU의 강절거동 효과로 인하여 보다 높은 지진력 감소효과가 있음을 알 수 있었다.

Critical earthquake loads for SDOF inelastic structures considering evolution of seismic waves

  • Moustafa, Abbas;Ueno, Kohei;Takewaki, Izuru
    • Earthquakes and Structures
    • /
    • 제1권2호
    • /
    • pp.147-162
    • /
    • 2010
  • The ground acceleration measured at a point on the earth's surface is composed of several waves that have different phase velocities, arrival times, amplitudes, and frequency contents. For instance, body waves contain primary and secondary waves that have high frequency content and reach the site first. Surface waves are composed of Rayleigh and Love waves that have lower phase velocity, lower frequency content and reach the site next. Some of these waves could be of more damage to the structure depending on their frequency content and associated amplitude. This paper models critical earthquake loads for single-degree-of-freedom (SDOF) inelastic structures considering evolution of the seismic waves in time and frequency. The ground acceleration is represented as combination of seismic waves with different characteristics. Each seismic wave represents the energy of the ground motion in certain frequency band and time interval. The amplitudes and phase angles of these waves are optimized to produce the highest damage in the structure subject to explicit constraints on the energy and the peak ground acceleration and implicit constraints on the frequency content and the arrival time of the seismic waves. The material nonlinearity is modeled using bilinear inelastic law. The study explores also the influence of the properties of the seismic waves on the energy demand and damage state of the structure. Numerical illustrations on modeling critical earthquake excitations for one-storey inelastic frame structures are provided.

The engineering merit of the "Effective Period" of bilinear isolation systems

  • Makris, Nicos;Kampas, Georgios
    • Earthquakes and Structures
    • /
    • 제4권4호
    • /
    • pp.397-428
    • /
    • 2013
  • This paper examines whether the "effective period" of bilinear isolation systems, as defined invariably in most current design codes, expresses in reality the period of vibration that appears in the horizontal axis of the design response spectrum. Starting with the free vibration response, the study proceeds with a comprehensive parametric analysis of the forced vibration response of a wide collection of bilinear isolation systems subjected to pulse and seismic excitations. The study employs Fourier and Wavelet analysis together with a powerful time domain identification method for linear systems known as the Prediction Error Method. When the response history of the bilinear system exhibits a coherent oscillatory trace with a narrow frequency band as in the case of free vibration or forced vibration response from most pulselike excitations, the paper shows that the "effective period" = $T_{eff}$ of the bilinear isolation system is a dependable estimate of its vibration period; nevertheless, the period associated with the second slope of the bilinear system = $T_2$ is an even better approximation regardless the value of the dimensionless strength,$Q/(K_2u_y)=1/{\alpha}-1$, of the system. As the frequency content of the excitation widens and the intensity of the acceleration response history fluctuates more randomly, the paper reveals that the computed vibration period of the systems exhibits appreciably scattering from the computed mean value. This suggests that for several earthquake excitations the mild nonlinearities of the bilinear isolation system dominate the response and the expectation of the design codes to identify a "linear" vibration period has a marginal engineering merit.

다중 가진에 대한 구조물의 지진응답 평가 (Evaluation of Seismic Response of Multi-Story Frames for Multiple Ground Excitations)

  • 최현훈;;김진구
    • 한국지진공학회논문집
    • /
    • 제12권6호
    • /
    • pp.35-45
    • /
    • 2008
  • 구조물의 응답에 대한 잔류변위의 영향을 평가하기 위하여, 초기 잔류변형이 있는 상태에서 작용하는 설계지진에 대한 좌굴방지 가새골조(BRBF)와 특수 모멘트골조(SMRF)의 응답을 평가하였다. 초기 잔류변형은 구조물에 두 가지 방법으로 적용하였다. 첫 번째 방법은 첫 지진에 대하여 구조물이 정지 상태에 도달한 이후 같은 크기의 지진을 적용하는 것이다. 두 번째 방법은 소요 잔류층간 변형이 발생할 때까지 일방향으로 가력한 다음 지진하중을 적용하였다. 해석결과에 따르면 초기 잔류층간변위는 BRBF와 SMRF의 응답에 큰 영향을 주었다. SMRF 시스템보다 BRBF의 응답이 초기 잔류변형에 크게 의존하였다. 그러므로 지진발생 이후 보수비용을 최소화하기 위하여 잔류층간변위를 줄이는 것이 필요하다.

Seismic performance of concrete frame structures reinforced with superelastic shape memory alloys

  • Alam, M. Shahria;Nehdi, Moncef;Youssef, Maged A.
    • Smart Structures and Systems
    • /
    • 제5권5호
    • /
    • pp.565-585
    • /
    • 2009
  • Superelastic Shape Memory Alloys (SMAs) are gaining acceptance for use as reinforcing bars in concrete structures. The seismic behaviour of concrete frames reinforced with SMAs is being assessed in this study. Two eight-storey concrete frames, one of which is reinforced with regular steel and the other with SMAs at the plastic hinge regions of beams and regular steel elsewhere, are designed and analyzed using 10 different ground motion records. Both frames are located in the highly seismic region of Western Canada and are designed and detailed according to current seismic design standards. The validation of a finite element (FE) program that was conducted previously at the element level is extended to the structure level in this paper using the results of a shake table test of a three-storey moment resisting steel RC frame. The ten accelerograms that are chosen for analyzing the designed RC frames are scaled based on the spectral ordinate at the fundamental periods of the frames. The behaviour of both frames under scaled seismic excitations is compared in terms of maximum inter-storey drift, top-storey drift, inter-storey residual drift, and residual top-storey drift. The results show that SMA-RC frames are able to recover most of its post-yield deformation, even after a strong earthquake.

Global seismic performance of a new precast CFST column to RC beam braced frame: Shake table test and numerical study

  • Xu, S.Y.;Li, Z.L.;Liu, H.J.
    • Steel and Composite Structures
    • /
    • 제21권4호
    • /
    • pp.805-827
    • /
    • 2016
  • A new type of precast CFST column to RC beam braced frame is proposed in this paper. A series of shake table tests were conducted to excite a one-third scale six-story model for investigating the global seismic performance of this type of structure against earthquake actions. Particular emphasis was given to its dynamic property, global seismic responses and failure path. Correspondingly, a numerical model built on the basis of fiber-beam-element model, multi-layer shell model and element-deactivation method was developed to simulate the seismic performance of the prototype structure. Numerical results were compared with the measured values from shake table tests to verify the validity and reliability of the numerical model. The results demonstrated that the proposed novel precast CFST column to RC beam braced frame performs excellently under strong earthquake excitations; the "strong CFST column-weak RC beam" and "strong connection-weak member" anti-seismic design principles can be easily achieved; the maximum deflections of precast CFSTC-RCB braced frame satisfied the deflection limitations proposed in national code; the numerical model can properly simulate the dynamic property and responses of the precast CFSTC-RCB braced frame that are highly concerned in engineering practice.

JRTR 제어봉구동장치의 내진시험 (Seismic Test of the Control Rod Drive Mechanism for JRTR)

  • 최명환;김경호;선종오;조영갑
    • 한국소음진동공학회논문집
    • /
    • 제26권5호
    • /
    • pp.552-558
    • /
    • 2016
  • A control rod drive mechanism(CRDM) is a reactor regulating system, which inserts, withdraws or maintains a control rod within a reactor core to control the reactivity of the core. The CRDM for Jordan Research and Training Reactor with 5MW power has been designed and fabricated based on the HANARO’s experience through KAERI and DAEWOO consortium. This paper describes the seismic test results to demonstrate the operability, the drop performance and the structural integrity of CRDM during or after seismic excitations. The seismic tests are carried out under 5 OBE and 1 SSE loads at three Test Rigs simulating the reactor structure and the pool top. From the tests, the CRDM is smoothly driven without a malfunction of stepping motor under OBE load. The pure drop time under OBE and SSE loads is measured as 1.169s and 1.855s to meet the design requirement. Also, it is found that the CRDM maintains the structural integrity without a change of the function and natural frequency before and after seismic loads.

Seismic performance of RC frames retrofitted with haunch technique

  • Akbar, Junaid;Ahmad, Naveed;Alam, Bashir;Ashraf, Muhammad
    • Structural Engineering and Mechanics
    • /
    • 제67권1호
    • /
    • pp.1-8
    • /
    • 2018
  • Shake table tests performed on five 1:3 reduced scale two story RC moment resisting frames having construction defects, have shown severe joint damageability in deficient RC frames, resulting in joint panels' cover spalling and core concrete crushing. Haunch retrofitting technique was adopted herein to upgrade the seismic resistance of the deficient RC frames. Additional four deficient RC frames were built and retrofitted with steel haunch; both axially stiffer and deformable with energy dissipation, fixed to the beam-column connections to reduce shear demand on joint panels. The as-built and retrofitted frames' seismic response parameters are calculated and compared to evaluate the viability of haunch retrofitting technique. The haunch retrofitting technique increased the lateral stiffness and strength of the structure, resulting in the increase of structure's overstrength. The retrofitting increased response modification factor R by 60% to 100%. Further, the input excitation PGA was correlated with the lateral roof displacement to derive structure response curve that have shown significant resistance of retrofitted models against input excitations. The technique can significantly enhance the seismic performance of deficient RC frames, particularly against the frequent and rare earthquake events, hence, promising for seismic risk mitigation.

구조손상을 고려한 기설구조물의 내진성능평가 (Seismic Capacity Evaluation of Existing Structures Incorporating Damage Assessment)

  • 송종걸;이진학;이동근
    • 한국강구조학회 논문집
    • /
    • 제16권5호통권72호
    • /
    • pp.543-553
    • /
    • 2004
  • 이 연구는 구조물의 내진성능평가와 관련하여, 기설구조물의 현재 상태에서의 구조손상을 추정하고, 이를 반영하여 내진성능을 평가하도록 하는 절차를 제안하였다. 구조손상 추정을 위해서는 역섭동법을 사용하였고, 역섭동법의 단점을 극복하기 위하여 부분구조법과 Tikhonov의 정규화 방법을 도입하였다. 손상된 구조물의 내진성능 평가를 위하여 구조물의 지진응답과 해당 구조물의 지진손상지수를 이용하였고, 제안 방법을 20층 예제구조물에 적용하여 손상추정 결과를 반영하는 것의 영향을 분석하였다.