• 제목/요약/키워드: seismic effects

검색결과 1,131건 처리시간 0.026초

Assessing 3D seismic damage performance of a CFR dam considering various reservoir heights

  • Karalar, Memduh;Cavusli, Murat
    • Earthquakes and Structures
    • /
    • 제16권2호
    • /
    • pp.221-234
    • /
    • 2019
  • Today, many important concrete face rockfill dams (CFRDs) have been built on the world, and some of these important structures are located on the strong seismic regions. In this reason, examination and monitoring of these water construction's seismic behaviour is very important for the safety and future of these dams. In this study, the nonlinear seismic behaviour of Ilısu CFR dam which was built in Turkey in 2017, is investigated for various reservoir water heights taking into account 1995 Kobe near-fault and far-fault ground motions. Three dimensional (3D) finite difference model of the dam is created using the FLAC3D software that is based on the finite difference method. The most suitable mesh range for the 3D model is chosen to achieve the realistic numerical results. Mohr-Coulomb nonlinear material model is used for the rockfill materials and foundation in the seismic analyses. Moreover, Drucker-Prager nonlinear material model is considered for the concrete slab to represent the nonlinearity of the concrete. The dam body, foundation and concrete slab constantly interact during the lifetime of the CFRDs. Therefore, the special interface elements are defined between the dam body-concrete slab and dam body-foundation due to represent the interaction condition in the 3D model. Free field boundary condition that was used rarely for the nonlinear seismic analyses, is considered for the lateral boundaries of the model. In addition, quiet artificial boundary condition that is special boundary condition for the rigid foundation in the earthquake analyses, is used for the bottom of the foundation. The hysteric damping coefficients are separately calculated for all of the materials. These special damping values is defined to the FLAC3D software using the special fish functions to capture the effects of the variation of the modulus and damping ratio with the dynamic shear-strain magnitude. Total 4 different reservoir water heights are taken into account in the seismic analyses. These water heights are empty reservoir, 50 m, 100 m and 130 m (full reservoir), respectively. In the nonlinear seismic analyses, near-fault and far-fault ground motions of 1995 Kobe earthquake are used. According to the numerical analyses, horizontal displacements, vertical displacements and principal stresses for 4 various reservoir water heights are evaluated in detail. Moreover, these results are compared for the near-fault and far-faults earthquakes. The nonlinear seismic analysis results indicate that as the reservoir height increases, the nonlinear seismic behaviour of the dam clearly changes. Each water height has different seismic effects on the earthquake behaviour of Ilısu CFR dam. In addition, it is obviously seen that near-fault earthquakes and far field earthquakes create different nonlinear seismic damages on the nonlinear earthquake behaviour of the dam.

Seismic modeling and analysis for sodium-cooled fast reactor

  • Koo, Gyeong-Hoi;Kim, Suk-Hoon;Kim, Jong-Bum
    • Structural Engineering and Mechanics
    • /
    • 제43권4호
    • /
    • pp.475-502
    • /
    • 2012
  • In this paper, the seismic analysis modeling technologies for sodium-cooled fast reactor (SFR) are presented with detailed descriptions for each structure, system and component (SSC) model. The complicated reactor system of pool type SFR, which is composed of the reactor vessel, internal structures, intermediate heat exchangers, primary pumps, core assemblies, and core support structures, is mathematically described with simple stick models which can represent fundamental frequencies of SSC. To do this, detailed finite element analyses were carried out to identify fundamental beam frequencies with consideration of fluid added mass effects caused by primary sodium coolant contained in the reactor vessel. The calculation of fluid added masses is performed by detailed finite element analyses using FAMD computer program and the results are discussed in terms of the ways to be considered in a seismic modeling. Based on the results of seismic time history analyses for both seismic isolation and non-isolation design, the functional requirements for relative deflections are discussed, and the design floor response spectra are proposed that can be used for subsystem seismic design.

The investigation of seismic performance of existing RC buildings with and without infill walls

  • Dilmac, Hakan;Ulutas, Hakan;Tekeli, Hamide;Demir, Fuat
    • Computers and Concrete
    • /
    • 제22권5호
    • /
    • pp.439-447
    • /
    • 2018
  • One of the important factors is the infill walls in the change of the structural rigidity, ductility, dynamic and static characteristics of the structures. The infill walls are not generally included in numerical analysis of reinforced concrete (RC) structural system due to lack of suitable theory and the difficulty of calculating the recommended models. In seismic regions worldwide, the residential structures are generally RC buildings with infill wall. Therefore, understanding the contribution of the infill walls to seismic performance of buildings may have a vital importance. This paper investigates the effects of infill walls on seismic performance of the existing RC residential buildings by considering requirements of the Turkish Earthquake Code (TEC). Seismic performance levels of residential RC buildings with and without walls in high-hazard zones were determined according to the nonlinear procedure given in the code. Pushover curves were obtained by considering the effect of masonry infill walls on seismic performance of RC buildings. The analysis results showed that the infill walls beneficially effected to the rigidity, roof displacements and seismic performance of the building.

Seismic stability analysis of tunnel face in purely cohesive soil by a pseudo-dynamic approach

  • Huang, Qi;Zou, Jin-feng;Qian, Ze-hang
    • Geomechanics and Engineering
    • /
    • 제23권1호
    • /
    • pp.1-13
    • /
    • 2020
  • To give a solution for seismic stability of tunnel faces subjected to earthquake ground shakings, the pseudo-dynamic approach is originally introduced to analyze tunnel face stability in this study. In the light of the upper-bound theorem of limit analysis, an advanced three-dimensional mechanism combined with pseudo-dynamic approach is proposed. Based on this mechanism, the required support pressure on tunnel face can be obtained by equaling external work rates to the internal energy dissipation and implementing an optimization searching procedure related to time. Both time and space feature of seismic waves are properly accounted for in the proposed mechanism. For this reason, the proposed mechanism can better represent the actual influence of seismic motion and has a remarkable advantage in evaluating the effects of vertical seismic acceleration, soil amplification factor, seismic wave period and initial phase difference on tunnel face stability. Furthermore, the pseudo-dynamic approach is compared with the pseudo-static approach. The difference between them is illustrated from a new but understandable perspective. The comparison demonstrates that the pseudo-static approach is a conservative method but still could provide precise enough results as the pseudo-dynamic approach if the value of seismic wavelengths is large or the height of soil structures is small.

Seismic response and failure modes for a water storage structure - A case study

  • Bhargava, Kapilesh;Ghosh, A.K.;Ramanujam, S.
    • Structural Engineering and Mechanics
    • /
    • 제20권1호
    • /
    • pp.1-20
    • /
    • 2005
  • The present paper deals with the seismic response analysis and the evaluation of most likely failure modes for a water storage structure. For the stress analysis, a 3-D mathematical model has been adopted to represent the structure appropriately. The structure has been analyzed for both static and seismic loads. Seismic analysis has been carried out considering the hydrodynamic effects of the contained water. Based on the stress analyses results, the most likely failure modes viz. tensile cracking and compressive crushing of concrete for the various structural elements; caused by the seismic event have been investigated. Further an attempt has also been made to quantify the initial leakage rate and average emptying time for the structure during seismic event after evaluating the various crack parameters viz. crack-width and crack-spacing at the locations of interest. The results are presented with reference to peak ground acceleration (PGA) of the seismic event. It has been observed that, an increase in PGA would result in significant increase in stresses and crack width in the various structural members. Significant increase in initial leakage rate and decrease in average emptying time for the structure has also been observed with the increase in PGA.

단주효과 및 고유주기를 고려한 비내진 학교시설의 반응 수정계수 (Response Modification Factors of Non-seismic School Buildings Considering Short Column Effects and Natural Period)

  • 김범석;박지훈
    • 한국지진공학회논문집
    • /
    • 제23권4호
    • /
    • pp.201-209
    • /
    • 2019
  • Response modification factors of school facilities for non-seismic RC moment frames with partial masonry infills in 'Manual for Seismic Performance Evaluation and Retrofit of School Facilities' published in 2018 were investigated in the preceding study. However, since previous studies are based on 2D frame analysis and limited analysis conditions, additional verification needs to be performed to further apply various conditions including orthogonal effect of seismic load. Therefore, this study is to select appropriate response modification factors of school facilities for non-seismic RC moment frames with partial masonry infills by 3D frame analysis. The results are as follows. An appropriate response modification factor for non-seismic RC moment frames with partial masonry infills is proposed as 2.5 for all cases if the period is longer than 0.6 seconds. Also if the period is less than 0.4 seconds and the ratio of shear-controlled columns is less than 30%, 2.5 is chosen too. However, if the period is less than 0.4 seconds and the ratio of shear-controlled columns is higher than 30%, the response modification factor shall be reduced to 2.0. If the period is between 0.4 and 0.6 seconds, then linearly interpolates the response correction factor.

지진취약도분석을 통한 교량의 지진위험도 평가 (Seismic Risk Assessment of Bridges Using Fragility Analysis)

  • 이진학;윤진영;윤정방
    • 한국지진공학회논문집
    • /
    • 제8권6호통권40호
    • /
    • pp.31-43
    • /
    • 2004
  • 지진취약도 분석을 통하여 교량의 지진 위험도를 평가하였다. 지진취약도 분석에서는 교각 하부의 소성힌지의 거동을 주요 손상인자로 분석하였으며, 또한 한반도 지진재해지도를 근거로 하여 지진발생확률을 산정한 후 이들을 이용하여 교량의 성능단계에 따른 손상발생확률을 분석하였다. 이 연구에서는 교각에 직접 전달되는 지진이 아닌 암반노두에서의 지진의 최대지반가속도에 대하여 지진취약도를 분석하였으며, 비선형 지진해석을 위해서는 층상지반의 영향으로 증폭된 지진하중을 고려하였다. 제안된 방법으로 예제교량의 지진위험도를 분석하였으며, 면진받침이 설치된 교량에 대한 지진 위험도의 저감 효과를 정량적으로 분석하였고, 지진재해지도에서의 조건이 다른 지역에 시공되는 경우의 지진위험도를 분석함으로써 현 시방서의 타당성을 간접적으로 검토하였다.

저층 경량건물의 고성능 내진을 위한 복합면진시스템의 적용 (Application of Hybrid Seismic Isolation System to Realize High Seismic Performance for Low-rise Lightweight Buildings)

  • 천영수
    • 토지주택연구
    • /
    • 제4권2호
    • /
    • pp.185-192
    • /
    • 2013
  • 이 논문에서는 저층 경량건물을 대상으로 고성능 내진을 구현하기 위하여 적용된 복합면진시스템의 적용효과가 비선형해석과 현장실험을 통하여 제시되었다. 이 연구에서 적용된 복합면진시스템은 슬라이딩베어링(sliding bearing)과 적층고무베어링(laminated rubber bearing)을 혼용하는 방법으로 전체 면진시스템의 고유주기를 신장시키는데 있어서 적층고무베어링이 지니는 한계를 극복하기 위한 것이다. 비선형해석결과, 복합면진시스템을 채용하여 설계된 면진건물은 아주 드물게 발생하는 강진에 대해서도 최대응답변위가 허용설계변위 이내이며, 최대응답전단력이 설계지진력 이하이므로 안전하게 유지될 수 있음을 알 수 있었다. 또한 현장실험결과, 면진층의 강성은 설계 등가강성 값의 약 95.8%에 해당하는 값을 나타내 전체 면진시스템의 실제 특성이 설계값과 잘 일치하고 있음을 확인할 수 있었다.

대도시 서울에서의 부지고유 지진 응답의 지역적 예측을 위한 GIS 기반의 공간 구역화 (GIS-based Spatial Zonations for Regional Estimation of Site-specific Seismic Response in Seoul Metropolis)

  • 선창국;천성호;정충기
    • 대한토목학회논문집
    • /
    • 제30권1C호
    • /
    • pp.65-76
    • /
    • 2010
  • 최근 지진 발생 사례들에서는 암반보다는 대부분 토사 퇴적층으로 구성된 부지에서의 심각한 지진 피해를 보여주고 있다. 이는 지진지반 운동의 증폭을 야기하는 부지 효과가 기반암 위 토사의 공간적 분포 및 동적 특성에 주로 관련되어 있기 때문이다. 본 연구에서는 지반 자료에 관한 통합적 GIS 기반의 정보 시스템을 국내 대표적 대도시 지역인 서울에서의 지진 운동에 대한 지역적 종합 대책 수립의 일환으로 구축하였다. 서울 지역에 대한 GIS 기반 지반 정보 시스템을 구축하기 위하여, 연구 대상 영역 및 인근에 대한 기존 지반 조사 자료의 수집이 이루어 졌고 지표 지반-지식 자료의 확보를 위한 부지 방문 조사가 추가적으로 수행되었다. 관심 대상 영역의 부지 효과 평가를 위한 지반 정보 시스템의 실질적 적용 목적으로, 지반지진공학적 변수인 기반암 심도 및 부지 주기에 관한 지진재해 구역 지도를 작성하고 지진 유발 재해 예측을 위한 지역적 종합 대책으로 제시하였다. 또한, 서울 지역 내 임의 부지 및 하위 행정 단위에서의 내진 설계 및 내진 성능 평가를 위한 부지 증폭계수의 결정 수단으로 부지 분류의 지진재해 구역화를 수행하였다. 본 연구에서 수행된 서울 지역에서의 지진재해 구역화 사례 연구로부터 GIS 기반의 지반 정보 시스템의 대도시에 대한 지진재해의 지역적 예측 뿐만 아니라 지진재해 저감을 위한 의사 결정 지원에서의 활용가능성을 확인하였다.

토사 절토사면 안정성 영향인자의 민감도 분석 (Sensitivity Analyses of Influencing Factors on Stability in Soil Cut Slope)

  • 유남재;박병수;전상현;조한기
    • 산업기술연구
    • /
    • 제26권B호
    • /
    • pp.73-81
    • /
    • 2006
  • A sensitivity analysis about effects of influencing factors on the stability of Soil cut slope was performed. Slope stability analyses were carried out under dry, rainy and seismic conditions. Dominant factors controlling the slope stability were chosen such as cohesion and internal friction angle, unit weight of soil, water table and seismic horizontal coefficient used for the slope stability during earthquake. Parametric stability analysis with those factors was performed for sensitivity analysis. As results of analyzing the sensitivity of factors under dry and rainy conditions, effects of cohesion, internal friction angle and unit weight of soil on the stability of slope are more critical in the dry condition than in the rainy condition. Cohesion and internal friction angle are more dominant factors influencing the slope stability irrespective of dry or rainy conditions than unit weight of soil and the horizontal seismic coefficient. The unit weight and the horizontal seismic coefficient affects crucially the stability according to conditions of slope formation and dry or rainy seasons. For the effect of horizontal seismic coefficient on stability of slope, safety factor of slope is not affected significantly by dry or rainy conditions. However, increase of the horizontal seismic coefficient under the rainy condition floes reduce the safety factor significantly rather than the dry condition. Therefore, it is needed that the location of the water table is assigned appropriately to satisfy the required safety factor of stability in the case of checking slope stability for the rainy and seismic conditions.

  • PDF