• 제목/요약/키워드: seismic effects

검색결과 1,124건 처리시간 0.021초

EFFECTS OF MECHANICAL PROPERTY VARIABILITY IN LEAD RUBBER BEARINGS ON THE RESPONSE OF SEISMIC ISOLATION SYSTEM FOR DIFFERENT GROUND MOTIONS

  • Choun, Young-sun;Park, Junhee;Choi, In-Kil
    • Nuclear Engineering and Technology
    • /
    • 제46권5호
    • /
    • pp.605-618
    • /
    • 2014
  • The effects of variability of the mechanical properties of lead rubber bearings on the response of a seismic isolation system are investigated. Material variability in manufacturing, aging, and operation temperature is assumed, and two variation models of an isolation system are considered. To evaluate the effect of ground motion characteristics on the response, 27 earthquake record sets with different peak A/V ratios were selected, and three components of ground motions were used for a seismic response analysis. The response in an isolation system and a superstructure increases significantly for ground motions with low A/V ratios. The variation in the mechanical properties of isolators results in a significant influence on the shear strains of the isolators and the acceleration response of the superstructure. The variation provisions in the ASCE-4 are reasonable, but more strict variation limits should be given to isolation systems subjected to ground motions having low A/V ratios. For application of seismic isolation systems to safety-related nuclear structures, the variation in the material and mechanical properties of the isolation system should be properly controlled during the manufacturing and aging processes. In addition, special consideration should be given to minimize the accidental torsion caused by the dissimilarity in the stiffness variations of the isolators.

탈선취약요소를 고려한 고속철도교량 장대레일 지진응답 평가 (Seismic Response of CWR on HSR Bridge Considering Derailment Inducing Factors)

  • 이장석;김대상
    • 한국지진공학회논문집
    • /
    • 제13권3호
    • /
    • pp.29-38
    • /
    • 2009
  • 지진 발생시 교량 상판 연결부의 상대변위로 레일에 발생하는 부가응력으로 인한 레일의 좌굴과 파손은 열차의 탈선을 유발할 수 있다. 교량의 지진응답 증가에 영향을 미치는 지반의 탈선취약요소와 교량의 구조적인 요소를 고려하여 고속철도교량 장대레일의 지진응답을 평가하였다. 연약층이 있는 지반, 상하역전형 지반과 같은 지반 탈선취약요소를 고려하기 위해서 지반을 평행층상지반으로 모델링하여 부지효과가 고려된 자유장운동을 구하고 이를 입력지진으로 사용하였다. 교각 높이나 적용 도상을 변화시키면서 구조적 특성이 레일의 지진응답에 미치는 영향을 분석하였다.

Combining in-plane and out-of-plane behaviour of masonry infills in the seismic analysis of RC buildings

  • Manfredi, V.;Masi, A.
    • Earthquakes and Structures
    • /
    • 제6권5호
    • /
    • pp.515-537
    • /
    • 2014
  • Current seismic codes (e.g. the NTC08 Italian code and the EC8 European code) adopt a performance-based approach for both the design of new buildings and the assessment of existing ones. Different limit states are considered by verifying structural members as well as non structural elements and facilities which have generally been neglected in practice. The key role of non structural elements on building performance has been shown by recent earthquakes (e.g. L'Aquila 2009) where, due to the extensive damage suffered by infills, partitions and ceilings, a lot of private and public buildings became unusable with consequent significant socio-economic effects. Furthermore, the collapse of infill panels, particularly in the case of out-of-plane failure, represented a serious source of risk to life safety. This paper puts forward an infill model capable of accounting for the effects arising from prior in-plane damage on the out-of-plane capacity of infill panels. It permits an assessment of the seismic performance of existing RC buildings with reference to both structural and non structural elements, as well as of their mutual interaction. The model is applied to a building type with RC framed structure designed only to vertical loads and representative of typical Italian buildings. The influence of infill on building performance and the role of the out-of-plane response on structural response are also discussed.

Source & crustal propagation effects on T-wave envelopes

  • 윤숙영;박민규;이원상
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2010년도 학술대회 초록집
    • /
    • pp.27-27
    • /
    • 2010
  • There have been several studies about empirical relation between seismic source parameters(e.g., focal mechanisms, depths, magnitudes, etc.) and T-wave observation. In order to delineate the relation, numerical and theoretical approaches to figure out T-wave excitation mechanism are required. In an attempt to investigate source radiation and wave scattering effects in the oceanic crust on T-wave envelopes, we perform three-dimensional numerical modeling to synthesize T-wave envelopes. We first calculate seismic P- and SV-wave energy on the seafloor using the Direct Simulation Monte Carlo based on the Radiative Transfer Theory, which enables us to take into account both realistic seismic source parameters and wave scattering in heterogeneous media, and then estimate excited T-wave energy by normal mode computation. The numerical simulation has been carried out considering the following different conditions: source types (strike and normal faults), source depths (shallow and deep), and wave propagation through homogeneous and heterogeneous Earth media. From the results of numerical modeling, we confirmed that T-wave envelopes vary according to spatial seismic energy distributions on the seafloor for the various input parameters. Furthermore, the synthesized T-wave envelopes show directional patterns due to anisotropic source radiation, and the slope change of T-wave envelopes caused by focal depth. Seismic wave scattering in the oceanic crust is likely to control the shape of envelopes.

  • PDF

The role of slenderness on the seismic behavior of ground-supported cylindrical silos

  • Demir, Aysegul Durmus;Livaoglu, Ramazan
    • Advances in concrete construction
    • /
    • 제7권2호
    • /
    • pp.65-74
    • /
    • 2019
  • This paper reports on the results of a parametric study, which examines the effects of varying aspect ratios on the dynamic response of cylindrical silos directly supported on the ground under earthquake loading. Previous research has shown that numerical models can provide considerably realistic simulations when it comes to the behavior of silos by using correct boundary conditions, appropriate element types and material models. To this end, a three dimensional numerical model, taking into account the bulk material-silo wall interaction, was produced by the ANSYS commercial program, which is in turn based on the finite element method. The results obtained from the numerical analysis are discussed comparatively in terms of dynamic material pressure, horizontal displacement, equivalent base shear force and equivalent bending moment responses for considered aspect ratios. The effects experienced because of the slenderness of the silo in regards to the seismic response were evaluated along with the effectiveness of the classification system proposed by Eurocode in evaluating the loads on the vertical walls. Results clearly show that slenderness directly affects the seismic response of such structures especially in terms of behavior and the magnitude of the responses. Furthermore the aspect ratio value of 2.0, given as a behavioral changing limit in the technical literature, can be used as a valid limit for seismic behavior.

Brace-type shear fuses for seismic control of long-span three-tower self-anchored suspension bridge

  • Shao, Feifei;Jia, Liangjiu;Ge, Hanbin
    • Structural Engineering and Mechanics
    • /
    • 제81권2호
    • /
    • pp.147-161
    • /
    • 2022
  • The Brace-Type Shear Fuse (BSF) device is a newly proposed steel damper with excellent cumulative ductility and stable energy dissipation. In consideration of the current situation where there are not many alternatives for transversal seismic devices used in long-span three-tower self-anchored bridges (TSSBs), this paper implements improved BSFs into the world's longest TSSB, named Jinan Fenghuang Yellow River Bridge. The new details of the BSF are developed for the TSSB, and the force-displacement hysteretic curves of the BSFs are obtained using finite element (FE) simulations. A three-dimensional refined finite element model for the research TSSB was established in SAP2000, and the effects of BSFs on dynamic characteristics and seismic response of the TSSB under different site conditions were investigated by the numerical simulation method. The results show that remarkable controlling effects of BSFs on seismic response of TSSBs under different site conditions were obtained. Compared with the case without BSFs, the TSSB installed with BSFs has mitigation ratios of the tower top displacement, lateral girder displacement, tower bending moment and tower shear force exceeding 95%, 78%, 330% and 346%, respectively. Meanwhile, BSFs have a sufficient restoring force mechanism with a minor post-earthquake residual displacement. The proposed BSFs exhibit good application prospects in long-span TSSBs.

Studies on control mechanism and performance of a novel pneumatic-driven active dynamic vibration absorber

  • Kunjie Rong;Xinghua Li;Zheng Lu;Siyuan Wu
    • Structural Engineering and Mechanics
    • /
    • 제87권2호
    • /
    • pp.117-127
    • /
    • 2023
  • To efficiently attenuate seismic responses of a structure, a novel pneumatic-driven active dynamic vibration absorber (PD-ADVA) is proposed in this study. PD-ADVA aims to realize closed-loop control using a simple and intuitive control algorithm, which takes the structure velocity response as the input signal and then outputs an inverse control force to primary structure. The corresponding active control theory and phase control mechanism of the system are studied by numerical and theoretical methods, the system's control performance and amplitude-frequency characteristics under seismic excitations are explored. The capability of the proposed active control system to cope with frequency-varying random excitation is evaluated by comparing with the optimum tuning TMD. The analysis results show that the control algorithm of PD-ADVA ensures the control force always output to the structure in the opposite direction of the velocity response, indicating that the presented system does not produce a negative effect. The phase difference between the response of uncontrolled and controlled structures is zero, while the phase difference between the control force and the harmonic excitation is π, the theoretical and numerical results demonstrate that PD-ADVA always generates beneficial control effects. The PD-ADVA can effectively mitigate the structural seismic responses, and its control performance is insensitive to amplitude. Compared with the optimum tuning TMD, PD-ADVA has better control performance and higher system stability, and will not have negative effects under seismic wave excitations.

Damping modification factor of pseudo-acceleration spectrum considering influences of magnitude, distance and site conditions

  • Haizhong Zhang;Jia Deng;Yan-Gang Zhao
    • Earthquakes and Structures
    • /
    • 제25권5호
    • /
    • pp.325-342
    • /
    • 2023
  • The damping modification factor (DMF) is used to modify the 5%-damped response spectrum to produce spectral values that correspond to other necessary damping ratios for seismic design. The DMF has been the subject of numerous studies, and it has been discovered that seismological parameters like magnitude and distance can have an impact on it. However, DMF formulations incorporating these seismological parameters cannot be directly applied to seismic design because these parameters are not specified in the present seismic codes. The goal of this study is to develop a formulation for the DMF that can be directly applied in seismic design and that takes the effects of magnitude, distance, and site conditions into account. To achieve this goal, 16660 ground motions with magnitudes ranging from 4 to 9 and epicentral distances ranging from 10 to 200 km are used to systematically study the effects of magnitude, distance, and site conditions on the DMF. Furthermore, according to the knowledge that magnitude and distance affect the DMF primarily by changing the spectral shape, a spectral shape factor is adopted to reflect influences of magnitude and distance, and a new formulation for the DMF incorporating the spectral shape factor is developed. In comparison to the current formulations, the proposed formulation provides a more accurate prediction of the DMF and can be employed directly in seismic design.

비내진 철근콘크리트 건축물의 FRP 재킷에 대한 내진보강 설계 전략 (Seismic Retrofit Scheme of FRP Column Jacketing System for Non-Seismic RC Building Frame)

  • 황희진;김혜원;오근영;신지욱
    • 한국지진공학회논문집
    • /
    • 제27권6호
    • /
    • pp.293-301
    • /
    • 2023
  • Existing reinforced concrete buildings with seismically deficient details have premature failure under earthquake loads. The fiber-reinforced polymer column jacket enhances the lateral resisting capacities with additional confining pressures. This paper aims to quantify the retrofit effect varying the confinement and stiffness-related parameters under three earthquake scenarios and establish the retrofit strategy. The retrofit effects were estimated by comparing energy demands between non-retrofitted and retrofitted conditions. The retrofit design parameters are determined considering seismic hazard levels to maximize the retrofit effects. The critical parameters of the retrofit system were determined by the confinement-related parameters at moderate and high seismic levels and the stiffness-related parameters at low seismic levels.

The influence of concrete degradation on seismic performance of gravity dams

  • Ahmad Yamin Rasa;Ahmet Budak;Oguz Akin Duzgun
    • Earthquakes and Structures
    • /
    • 제26권1호
    • /
    • pp.59-75
    • /
    • 2024
  • This paper presents a dam-reservoir interaction model that includes, water compressibility, sloshing of surface water, and radiation damping at the far-end reservoir, to investigate the influence of concrete deterioration on seismic behavior along with seismic performance of gravity dams. Investigations on seismic performance of the dam body have been conducted using the linear time-history responses obtained under six real and 0.3 g normalized earthquake records with time durations from 10 sec to 80 sec. The deterioration of concrete is assumed to develop due to mechanical and chemical actions over the dam lifespan. Several computer programs have been developed in FORTRAN 90 and MATLAB programming languages to analyze the coupled problem considering two-dimensional (2D) plane-strain condition. According to the results obtained from this study, the dam structure shows critical responses at the later ages (75 years) that could cause disastrous consequences; the critical effects of some earthquake loads such as Chi-Chi with 36.5% damage and Loma with 56.2% damage at the later ages of the selected dam body cannot be negligible; and therefore, the deterioration of concrete along with its effects on the dam response should be considered in analysis and design.