• Title/Summary/Keyword: seismic earth pressure

Search Result 55, Processing Time 0.025 seconds

Effect of seismic acceleration directions on dynamic earth pressures in retaining structures

  • Nian, Ting-Kai;Liu, Bo;Han, Jie;Huang, Run-Qiu
    • Geomechanics and Engineering
    • /
    • v.7 no.3
    • /
    • pp.263-277
    • /
    • 2014
  • In the conventional design of retaining structures in a seismic zone, seismic inertia forces are commonly assumed to act upwards and towards the wall facing to cause a maximum active thrust or act upwards and towards the backfill to cause a minimum passive resistance. However, under certain circumstances this design approach might underestimate the dynamic active thrust or overestimate the dynamic passive resistance acting on a rigid retaining structure. In this study, a new analytical method for dynamic active and passive forces in c-${\phi}$ soils with an infinite slope was proposed based on the Rankine earth pressure theory and the Mohr-Coulomb yield criterion, to investigate the influence of seismic inertia force directions on the total active and passive forces. Four combinations of seismic acceleration with both vertical (upwards or downwards) and horizontal (towards the wall or backfill) directions, were considered. A series of dimensionless dynamic active and passive force charts were developed to evaluate the key influence factors, such as backfill inclination ${\beta}$, dimensionless cohesion $c/{\gamma}H$, friction angle ${\phi}$, horizontal and vertical seismic coefficients, $k _h$ and $k_v$. A comparative study shows that a combination of downward and towards-the-wall seismic inertia forces causes a maximum active thrust while a combination of upward and towards-the-wall seismic inertia forces causes a minimum passive resistance. This finding is recommended for use in the design of retaining structures in a seismic zone.

Reliability Analysis of Caisson Type Quay wall Considering Phase Difference of Seismic Earth-Pressure (지진토압의 위상차를 고려한 케이슨 안벽의 신뢰성해석)

  • 김동현;윤길림;박우선
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.15 no.4
    • /
    • pp.242-248
    • /
    • 2003
  • For reliability analysis of caisson type quay walls, an approach to include the phase difference between the caisson motion and the dynamic earth pressure is proposed. Present approach. which uses the phase difference parameter, may over-estimate earth pressure. But the proposed approach considers the phase angle instead of the phase difference in estimating resultant external load. Therefore. it is more reasonable than the previous one. Accordingly, calculation of probability of failure becomes more accurate. Numerical example is used to compare the two approaches.

A Study on the Behavior of Reinforced Earth Retaining Walls by Shaking Table Test (진동대 실험을 이용한 보강토 옹벽의 거동특성 연구)

  • Yoon, Won-Sub;Chae, Young-Su;Shim, Jae-Sang
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.4
    • /
    • pp.49-59
    • /
    • 2011
  • In order to understand evaluation of the seismic stability of a reinforced earth retaining, we made chambers of 1:10 (the ratio of the miniature), considering the law of similarity based on drawings of representative cross sections. And we measured an increase in acceleration, earth pressure, and displacement after applying Hachinohe wave (long period), Ofunato wave (short period), and artificial wave, complying with the domestic standards, in order to evaluate the external stability of the reinforced earth retaining wall during earthquake based on the measurements. As a result, the unreinforced earth retaining wall collapsed at 2 g of seismic acceleration. But the reinforced earth retaining wall was evaluated to ensure proper stability as well, with respect to the earth pressure gauge, the increments of earth pressure tend to be raised significantly in the upper than the lower and showed a similar characteristic of behavior in previous theory.

Variation of Dynamic Earth Pressure Due to Sliding of Retaining Walls (옹벽의 활동에 따른 배면 동적토압의 변화)

  • Yoon Suk-Jae;Kim Sung-Ryul;Hwang Jae-Ik;Kim Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.8
    • /
    • pp.55-61
    • /
    • 2005
  • Mononobe-Okabe method is generally used to evaluate dynamic earth pressure for the seismic design of retaining walls. However, Mononobe-Okabe method does not consider the effects of dynamic interactions between backfill soil and walls. In this research, shaking table tests on retaining walls were performed to analyze the phase and magnitude of dynamic earth pressure. The unit weight of walls, the amplitude of input acceleration and the base friction coefficient of walls were varied to analyze the influence of these factors on the dynamic earth pressure. Test results showed that the dynamic earth pressure was 180 degrees out of phase with the wall inertia force for the low sliding velocity of the wall, whereas small peaks of the dynamic earth pressure, which are in phase with the wall inertia force, were developed for the high sliding velocity of the wall. The amplitude of dynamic earth pressure was proportional to that of wall acceleration and the unit weight of the wall. In addition, the dynamic earth forces calculated by the Mononobe-Okabe method were the upper limit of the dynamic earth pressures.

Seismic Fragility Evaluation of Inverted T-type Wall with a Backfill Slope Considering Site Conditions (사면 경사도가 있는 뒷채움토와 지반특성을 고려한 역T형 옹벽의 지진시 취약도 평가)

  • Seo, Hwanwoo;Kim, Byungmin;Park, Duhee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.5
    • /
    • pp.533-541
    • /
    • 2021
  • Retaining walls have been used to prevent slope failure through resistance of earth pressure in railway, road, nuclear power plant, dam, and river infrastructure. To calculate dynamic earth pressure and determine the characteristics for seismic behavior, many researchers have analyzed the nonlinear response of ground and structure based on various numerical analyses (FLAC, PLAXIS, ABAQUS etc). In addition, seismic fragility evaluation is performed to ensure safety against earthquakes for structures. In this study, we used the FLAC2D program to understand the seismic response of the inverted T-type wall with a backfill slope, and evaluated seismic fragility based on relative horizontal displacements of the wall. Nonlinear site response analysis was performed for each site (S2 and S4) using the seven ground motions to calculate various seismic loadings reflecting site characteristics. The numerical model was validated based on other numerical models, experiment results, and generalized formula for dynamic active earth pressure. We also determined the damage state and damage index based on the height of retaining wall, and developed the seismic fragility curves. The damage probabilities of the retaining wall for the S4 site were computed to be larger than those for the S2 site.

Nonlinear Seismic Analysis of U-Shaped Cantilever Retaining Structures

  • Sadiq, Shamsher;Park, Duhee;Yoo, Jinkwon;Yoon, Jinam;Kim, Juhyung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.11
    • /
    • pp.27-33
    • /
    • 2017
  • Nonlinear dynamic analysis is performed to calculate the response of U-shaped cantilever retaining structure under seismic loading using the finite element (FE) analysis program OpenSees. A particular interest of the study is to evaluate whether the moment demand in the cantilever can be accurately predicted, because it is an important component in the seismic design. The numerical model is validated against a centrifuge test that was performed on cantilever walls with dry medium dense sand in backfill. Seismic analysis is performed using the pressure-dependent, multi-yield-surface, plasticity based soil constitutive model implemented in OpenSees. Normal springs are used to simulate the soil-structure interface. Comparison with centrifuge show that FE analysis provides good estimates of both the acceleration response and bending moment. The lateral earth pressure near the bottom of the wall is overestimated in the numerical model, but this does not contribute to a higher prediction of the moment.

A Case Study of Evaluating Inertial Effects for Inverted T-shape Retaining Wall via Dynamic Centrifuge Test (동적원심모형실험을 이용한 지진 시 역T형 옹벽의 관성력 영향 분석 사례 연구)

  • Jo, Seong-Bae;Ha, Jeong-Gon;Choo, Yun-Wook;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.4
    • /
    • pp.33-44
    • /
    • 2013
  • Mononobe-Okabe (M-O) theory is widely used for evaluating seismic earth pressure of retaining wall. It was originally developed for gravity walls, which have rigid behavior, retaining cohesionless backfill materials. However, it is used for cantilever retaining wall on the various foundation conditions. Considering only inertial force of the soil wedge as a dynamic force in the M-O method, inertial force of the wall does not take into account the effect on the dynamic earth pressure. This paper presents the theoretical background for the calculation of the dynamic earth pressure of retaining wall during earthquakes, and the current research trends are organized. Besides, the discrepancies between real seismic behavior and M-O method for inverted T-shape retaining wall with 5.4m height subjected to earthquake motions were evaluated using dynamic centrifuge test. From previous studies, it was found that application point, distribution of dynamic earth pressure and M-O method are needed to be re-examined. Test results show that real behavior of retaining wall during an earthquake has a different phase between dynamic earth pressure and inertial force of retaining wall. Moreover, when bending moments of retaining wall reach maximum values, the measured earth pressures are lower than static earth pressures and it is considered due to inertial effects of retaining wall.

Investigation on seismic behavior of combined retaining structure with different rock shapes

  • Lin, Yu-liang;Zhao, Lian-heng;Yang, T.Y.;Yang, Guo-lin;Chen, Xiao-bin
    • Structural Engineering and Mechanics
    • /
    • v.73 no.5
    • /
    • pp.599-612
    • /
    • 2020
  • A combination of a gravity wall and an anchor beam is widely used to support the high soil deposit on rock mass. In this study, two groups of shaking table test were performed to investigate the responses of such combined retaining structure, where the rock masses were shaped with a flat surface and a curved surface, respectively. Meanwhile, the dynamic numerical analysis was carried out for a comparison or an extensive study. The results were studied and compared between the combined retaining structures with different shaped rock masses with regard to the acceleration response, the earth pressure response, and the axial anchor force. The acceleration response is not significantly influenced by the surface shape of rock mass. The earth pressure response on the combined retaining structure with a flat rock surface is more intensive than the one with a curved rock surface. The anchor force is significantly enlarged by seismic excitation with a main earthquake-induced increment at the first intensive pulse of Wenchuan motion. The value of anchor force in the combined retaining structure with a flat rock surface is generally larger than the one with a curved rock surface. Generally, the combined retaining structure with a curved rock surface presents a better seismic performance.

Long-term Behavior of Earth Pressure on Integral Abutments (일체식 교대의 장기토압 거동)

  • Nam, Moon-S.;Park, Young-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.4
    • /
    • pp.47-58
    • /
    • 2007
  • The usage of Integral abutment bridges has been increased worldwide because of reducing bridge maintenance costs and resisting seismic loads. Although these attributes make the integral abutment bridge an increasingly popular choice, back-abutment interaction issues remain unresolved. Hence, the earth pressure behavior of an integral abutment bridge having 90 m long PSC beam bridge for the first time in Korea was analyzed by conducting long term monitoring in this study. Based on this study, the results were as follows; the ratio of maximum passive movement to the abutment height (H) of 0.0027 and the maximum passive earth pressure coefficient of 4.8 were developed at 0.82H from the bottom of the abutment during summer season. During winter season, the ratio of maximum active movement to H of 0.0011 and the maximum active earth pressure coefficient of 0.7 were developed at the same location as in summer season. The new earth pressure distributions having a trapezoid type were proposed based on this study.

Geomechanical analysis of elastic parameters of the solid core of the Earth

  • Guliyev, Hatam H.
    • Geomechanics and Engineering
    • /
    • v.14 no.1
    • /
    • pp.19-27
    • /
    • 2018
  • It follows from the basic principles of mechanics of deformable solids relating to the strength, stability and propagation of elastic waves that the Earth's inner core cannot exist in the form of a spherical structure in the assumed thermobaric conditions and calculation values of physico-mechanical parameters. Pressure level reaches a value that is significantly greater than the theoretical limit of medium strength in the model approximations at the surface of the sphere of the inner core. On the other hand, equilibrium state of the sphere is unstable on the geometric forming at much lower loads under the influence of the "dead" surface loads. In case of the action of "follower" loads, the assumed pressure value on the surface of the sphere is comparable with the value of the critical load of "internal" instability. In these cases, due to the instability of the equilibrium state, propagation of homogeneous deformations becomes uneven in the sphere. Moreover, the elastic waves with actual velocity cannot propagate in such conditions in solid medium. Violation of these fundamental conditions of mechanics required in determining the physical and mechanical properties of the medium should be taken into account in the integrated interpretations of seismic and laboratory (experimental) data. In this case, application of the linear theory of elasticity and elastic waves does not ensure the reliability of results on the structure and composition of the Earth's core despite compliance with the required integral conditions on the mass, moment of inertia and natural oscillations of the Earth.