• Title/Summary/Keyword: seismic drift demand

Search Result 76, Processing Time 0.022 seconds

New optimum distribution of lateral strength of shear-type buildings for uniform damage

  • Donaire-Avila, Jesus;Lucchini, Andrea;Benavent-Climent, Amadeo;Mollaioli, Fabrizio
    • Structural Engineering and Mechanics
    • /
    • v.76 no.3
    • /
    • pp.279-291
    • /
    • 2020
  • The seismic design of conventional frame structures is meant to enhance plastic deformations at beam ends and prevent yielding in columns. To this end, columns are made stronger than beams. Yet yielding in columns cannot be avoided with the column-to-beam strength ratios (about 1.3) prescribed by seismic codes. Preventing plastic deformations in columns calls for ratios close to 4, which is not feasible for economic reasons. Furthermore, material properties and the rearrangement of geometric shapes inevitably make the distribution of damage among stories uneven. Damage in the i-th story can be characterized as the accumulated plastic strain energy (Wpi) normalized by the product of the story shear force (Qyi) and drift (δyi) at yielding. Past studies showed that the distribution of the plastic strain energy dissipation demand, Wpi/ΣWpj, can be evaluated from the deviation of Qyi with respect to an "optimum value" that would make the ratio Wpi/(Qyiδyi) -i.e. the damage- equal in all stories. This paper investigates how the soil type and ductility demand affect the optimum lateral strength distribution. New optimum lateral strength distributions are put forth and compared with others proposed in the literature.

Site specific fragility modification factor for mid-rise RC buildings based on plastic energy dissipation

  • Merin Mathews;B.R. Jayalekshmi;Katta Venkataramana
    • Earthquakes and Structures
    • /
    • v.27 no.4
    • /
    • pp.331-344
    • /
    • 2024
  • The performance of reinforced concrete buildings subjected to earthquake excitations depends on the structural behaviour of the superstructure as well as the type of foundation and the properties of soil on which the structure is founded. The consideration of the effects due to the interaction between the structure and soil- foundation alters the seismic response of reinforced concrete buildings subjected to earthquake motion. Evaluation of the structural response of buildings for quantitative assessment of the seismic fragility has been a demanding problem for the engineers. Present research deals with development of fragility curve for building specific vulnerability assessment based on different damage parameters considering the effect of soil-structure interaction. Incremental Dynamic Analysis of fixed base and flexible base RC building models founded on different soil conditions was conducted using finite element software. Three sets of fragility curves were developed with maximum roof displacement, inter storey drift and plastic energy dissipated as engineering demand parameters. The results indicated an increase in the likelihood of exceeding various damage limits by 10-40% for flexible base condition with soft soil profiles. Fragility curve based on energy dissipated showed a higher probability of exceedance for collapse prevention damage limit whereas for lower damage states, conventional methods showed higher probability of exceedance. With plastic energy dissipated as engineering demand parameter, it is possible to track down the intensity of earthquake at which the plastic deformation starts, thereby providing an accurate vulnerability assessment of the structure. Fragility modification factors that enable the transformation of existing fragility curves to account for Soil-Structure Interaction effects based on different damage measures are proposed for different soil conditions to facilitate a congenial vulnerability assessment for buildings with flexible base conditions.

Effects of Composite Floor Slab on Seismic Performance of Welded Steel Moment Connections (철골모멘트 용접접합부의 내진성능에 미치는 합성슬래브의 영향)

  • Lee, Cheol Ho;Jung, Jong Hyun;Kim, Jeong Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.5
    • /
    • pp.385-396
    • /
    • 2014
  • Traditionally, domestic steel design and construction practice has provided extra shear studs to moment frame beams even when they are designed as non-composite beams. In the 1994 Northridge earthquake, connection damage initiated from the beam bottom flange side was prevalent. The upward moving of the neutral axis due to the composite action between steel beam and floor deck was speculated to be one of the critical causes. In this study, full-scale seismic testing was conducted to investigate the side effects of the composite action in steel seismic moment frames. The specimen PN700-C, designed following the domestic connection and floor deck details, exhibited significant upward shift of the neutral axis under sagging (or positive) moment, thus producing high strain demand on the bottom flange, and showed a poor seismic performance because of brittle fracture of the beam bottom flange at 3% story drift. The specimen DB700-C, designed by using RBS connection and with the details of minimized floor composite action, exhibited superior seismic performance, without experiencing any fracture or concrete crushing, almost identical to the bare steel counterpart (specimen DB700-NC). The results of this study clearly indicate that the beams and connections in seismic steel moment frames should be constructed to minimize the composite action of a floor deck if possible.

Experimental Evalutation of the Seismic Performance of WUF-W Moment Connections with a Modified Access Hole (개선된 엑세스 홀 형상을 갖는 WUF-W접합부의 실험을 통한 내진성능평가)

  • Han, Sang Whan;Jung, Jin;Moon, Ki-Hoon;Kim, Jin Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.6
    • /
    • pp.21-28
    • /
    • 2012
  • Welded Unreinforced Flange-Welded Web (WUF-W) connection is one of Special Moment Frame (SMF) specified in ANSI/AISC-358. From the experimental test of WUF-W connection specimens conducted by the previous study, fracture occurred in the beam flange before achieving total inter-story drift angle of 0.04radian required for Special Moment Frames (SMF) system even though the specimens satisfied the design and detailing requirement specified in ANSI/AISC-358. These results are estimated as problem of the access hole geometry. In this study, a full-scale WUF-W connection specimen was made with a modified access hole geometry, and tested with the same test setting and loading as the previous test. From test results, the deformation capacity of the tested WUF-W connection specimen exceeded 4%, which is required for connections in SMF system. Comparing with the WUF-W specimens of the previous study, the strain demand of the beam flange in the tested specimen was decreased and energy dissipation capacity of the specimen was improved.

Capacity Spectrum Method Based on Inelastic Displacement Ratio (비탄성변위비를 이용한 능력 스펙트럼법)

  • Han, Sang-Whan;Bae, Mun-Su
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.2
    • /
    • pp.69-80
    • /
    • 2008
  • In this study, improved capacity spectrum method (CSM) is proposed. The method can account for higher mode contribution to the seismic response of MDOF systems. The CSM has been conveniently used for determining maximum roof displacement using both demand spectrum and capacity curve of equivalent SDOF system. Unlike the conventional CSM, the maximum roof displacement is determined without iteration using inelastic displacement ratio and R factor calculated from demand spectrum and capacity curve. Three moment resisting steel frames of 3-, 9- and 20-stories are considered to test the accuracy of the proposed method. Nonlinear response history analysis (NL-RHA) for three frames is also conducted, which is considered as an exact solution. SAC LA 10/50 and 2/50 sets of ground motions are used. Moreover, this study estimates maximum story drift ratios (IDR) using ATC-40 CSM and N2-method and compared with those from the proposed method and NL-RHA. It shows that the proposed CSM estimates the maximum IDR accurately better than the previous methods.

Performance based assessment for tall core structures consisting of buckling restrained braced frames and RC walls

  • Beiraghi, Hamid;Alinaghi, Ali
    • Earthquakes and Structures
    • /
    • v.21 no.5
    • /
    • pp.515-530
    • /
    • 2021
  • In a tall reinforced concrete (RC) core wall system subjected to strong ground motions, inelastic behavior near the base as well as mid-height of the wall is possible. Generally, the formation of plastic hinge in a core wall system may lead to extensive damage and significant repairing cost. A new configuration of core structures consisting of buckling restrained braced frames (BRBFs) and RC walls is an interesting idea in tall building seismic design. This concept can be used in the plan configuration of tall core wall systems. In this study, tall buildings with different configurations of combined core systems were designed and analyzed. Nonlinear time history analysis at severe earthquake level was performed and the results were compared for different configurations. The results demonstrate that using enough BRBFs can reduce the large curvature ductility demand at the base and mid-height of RC core wall systems and also can reduce the maximum inter-story drift ratio. For a better investigation of the structural behavior, the probabilistic approach can lead to in-depth insight. Therefore, incremental dynamic analysis (IDA) curves were calculated to assess the performance. Fragility curves at different limit states were then extracted and compared. Mean IDA curves demonstrate better behavior for a combined system, compared with conventional RC core wall systems. Collapse margin ratio for a RC core wall only system and RC core with enough BRBFs were almost 1.05 and 1.92 respectively. Therefore, it appears that using one RC core wall combined with enough BRBF core is an effective idea to achieve more confidence against tall building collapse and the results demonstrated the potential of the proposed system.