• 제목/요약/키워드: seismic domain truncation

검색결과 2건 처리시간 0.013초

Efficient and accurate domain-truncation techniques for seismic soil-structure interaction

  • Guddati, Murthy;Savadatti, Siddharth
    • Earthquakes and Structures
    • /
    • 제3권3_4호
    • /
    • pp.563-580
    • /
    • 2012
  • We modify the formulation of a recently developed absorbing boundary condition (ABC), the perfectly matched discrete layers (PMDL), to incorporate the excitation coming from the exterior such as earthquake waves. The modified formulation indicates that the effect of the exterior excitation can be incorporated into PMDL ABCs (traditionally designed to treat only interior excitation) simply by applying appropriate forces on the nodes connected to the first PMDL layer. Numerical results are presented to clearly illustrate the effectiveness of the proposed method.

Seismic analysis of dam-foundation-reservoir coupled system using direct coupling method

  • Mandal, Angshuman;Maity, Damodar
    • Coupled systems mechanics
    • /
    • 제8권5호
    • /
    • pp.393-414
    • /
    • 2019
  • This paper presents seismic analysis of concrete gravity dams considering soil-structure-fluid interaction. Displacement based plane strain finite element formulation is considered for the dam and foundation domain whereas pressure based finite element formulation is considered for the reservoir domain. A direct coupling method has been adopted to obtain the interaction effects among the dam, foundation and reservoir domain to obtain the dynamic responses of the dam. An efficient absorbing boundary condition has been implemented at the truncation surfaces of the foundation and reservoir domains. A parametric study has been carried out considering each domain separately and collectively based on natural frequencies, crest displacement and stress at the neck level of the dam body. The combined frequency of the entire coupled system is very less than that of the each individual sub-system. The crest displacement and neck level stresses of the dam shows prominent enhancement when coupling effect is taken into consideration. These outcomes suggest that a complete coupled analysis is necessary to obtain the actual responses of the concrete gravity dam. The developed methodology can easily be implemented in finite element code for analyzing the coupled problem to obtain the desired responses of the individual subdomains.