• 제목/요약/키워드: seismic design code

검색결과 480건 처리시간 0.025초

잔교식 항만구조물의 내진설계기준에 관한 연구 (A Study of the Seismic Design Guidelines for Marginal Wharf Structures)

  • 김문겸
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1998년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Spring 1998
    • /
    • pp.188-195
    • /
    • 1998
  • The seismic design guidelines for the pile-supported marginal wharf structures are studied. Various design codes such as AASHTO code or UBC code, which are focused on general structures, may be referred for the design of the wharf structures. However, in developing domestic design code, special consideration should be made concerning the size of the earthquake and the type of the structure. This study aims at the comparison among the various design codes for a specific wharf structure in the process of developing a domestic design code.

  • PDF

The effect of different earthquake ground motion levels on the performance of steel structures in settlements with different seismic hazards

  • Isik, Ercan;Karasin, ibrahim Baran;Karasin, Abdulhalim
    • Structural Engineering and Mechanics
    • /
    • 제84권1호
    • /
    • pp.85-100
    • /
    • 2022
  • The updated Turkish Building Earthquake Code has been significantly renovated and expanded compared to previous seismic design codes. The use of earthquake ground motion levels with different probabilities of exceedance is one of the major advances in structural mechanics with the current code. This study aims to investigate the earthquake performance of steel structure in settlements with different seismic hazards for various earthquake ground motion levels. It is focused on earthquake and structural parameters for four different ground motion levels with different probabilities of exceedance calculated according to the location of the structure by the updated Turkish Hazard Map. For this purpose, each of the seven different geographical regions of Turkey which has the same seismic zone in the previous earthquake hazard map has been considered. Earthquake parameters, horizontal design elastic spectra obtained and comparisons were made for all different ground motion levels for the seven different locations, respectively. Structural analyzes for a sample steel structure were carried out using pushover analysis by using the obtained design spectra. It has been determined that the different ground motion levels significantly affect the expected target displacements of the structure for performance criteria. It is noted that the different locations of the same earthquake zone in the previous code with the same earthquake-building parameters show significant variations due to the micro zoning properties of the updated seismic design code. In addition, the main innovations of the updated code were discussed.

국내 옹벽의 유사정적 내진설계기준 개선방향에 대한 고찰 (A Discussion on the Improvement of Pseudo-Static Seismic Design Criteria of Retaining Wall in Domestic)

  • 조성배;하정곤;이진선;김동수
    • 한국지진공학회논문집
    • /
    • 제19권2호
    • /
    • pp.45-53
    • /
    • 2015
  • This paper reviews the current seismic design code and research for dynamic earth pressure on retaining structures. Domestic design codes do not clearly define the estimation of dynamic earth pressure and give different comments for seismic coefficient, wall inertia and distribution of dynamic earth pressure using Mononobe-Okabe method. AASHTO has been revised reflecting current research and aims for effective seismic design. Various design codes are analyzed to compare their performance and economic efficiency. The results are used to make improvement of current domestic seismic design code. Further, it is concluded that the experimental investigation is also needed to verify and improve domestic seismic code for dynamic earth pressure.

지진파 탁월주기를 고려한 비구조요소의 수평설계지진력 평가 (A Study on Evaluation of Horizontal Force of Non-structural Components Considering Predominant Periods of Seismic Waves)

  • 오상훈;김주찬
    • 한국지진공학회논문집
    • /
    • 제24권6호
    • /
    • pp.267-275
    • /
    • 2020
  • In the event of an earthquake, non-structural components require seismic performance to ensure evacuation routes and to protect lives from falling non-structural components. Accordingly, the seismic design code proposes horizontal force for the design and evaluation of non-structural components. Ground motion observed on each floor is affected by a building's eigen vibration mode. Therefore, the earthquake damage of non-structural components is determined by the characteristics of the non-structural component system and the vibration characteristics of the building. Floor response spectra in the seismic design code are estimated through time history analysis using seismic waves. However, it is difficult to use floor response spectra as a design criterion because of user-specific uncertainties of time history analysis. In addition, considering the response characteristics of high-rise buildings to long-period ground motions, the safety factor of the proposed horizontal force may be low. Therefore, this study carried out the horizontal force review proposed in the seismic design code through dynamic analysis and evaluated the floor response of seismic waves considering buildings and predominant periods of seismic waves.

소방시설 내진설계의 필요성과 기준정비에 관한 연구 (The Study on the Necessity of Seismic Design for Fire Protection System and the Establishment of Standard)

  • 신이철;한병찬;박선규;이현진;권영진
    • 한국화재소방학회논문지
    • /
    • 제23권2호
    • /
    • pp.6-12
    • /
    • 2009
  • 최근 세계적으로 대규모 지진들이 발생하고 있다. 이러한 지진의 피해는 진동에 의한 피해보다 지진으로 소방시설이 기능을 상실하여 전기 및 가스설비의 파손으로 발생하는 화재를 진압하지 못한 2차적 피해가 더 크다. 따라서 현재 우리나라의 지진 발생 추이를 확인할 필요가 있다. 본 연구에서는 미국과 일본의 소방시설의 지진피해 사례 및 내진설계기준을 분석 하였으며, 우리나라와 유사한 미국의 기준과 비교한 결과 소방시설 내진설계기준의 적용범위가 우리나라의 건축 구조물의 특성에 매우 비효율적인 것으로 나타났다. 이에 따라 국내 현실을 감안하여 적용범위를 설정하도록 제안하였다.

KBC 2005 내진설계 주요 개정사항 (Significant Changes in the Seismic Design Provisions of the 2005 KBC)

  • 정광량;유병억
    • 기술사
    • /
    • 제38권5호
    • /
    • pp.5-9
    • /
    • 2005
  • The seismic design provisions of the 2005 KBC has been based on the 2000 IBC and has considered the building code situations in Korea. There are site ground motion, soil class, seismic design category in the significant changes of the 2005 KBC. In the case of soft soil condition, the response spectrum acceleration of the 2005 KBC is larger than that of previous code. To reduce the seismic force of the 2005 KBC, it need to introduce the eqrthauke force resisting system with high ductility.

  • PDF

Seismic Performance of High-rise Concrete Buildings in Chile

  • Lagos, Rene;Kupfer, Marianne;Lindenberg, Jorge;Bonelli, Patricio;Saragoni, Rodolfo;Guendelman, Tomas;Massone, Leonardo;Boroschek, Ruben;Yanez, Fernando
    • 국제초고층학회논문집
    • /
    • 제1권3호
    • /
    • pp.181-194
    • /
    • 2012
  • Chile is characterized by the largest seismicity in the world which produces strong earthquakes every $83{\pm}9years$ in the Central part of Chile, where it is located Santiago, the capital of Chile. The short interval between large earthquakes magnitude 8.5 has conditioned the Chilean seismic design practice to achieve almost operational performance level, despite the fact that the Chilean Code declares a scope of life safe performance level. Several Indexes have been widely used throughout the years in Chile to evaluate the structural characteristics of concrete buildings, with the intent to find a correlation between general structural conception and successful seismic performance. The Indexes presented are related only to global response of buildings under earthquake loads and not to the behavior or design of individual elements. A correlation between displacement demand and seismic structural damage is presented, using the index $H_o/T$ and the concrete compressive strain ${\varepsilon}_c$. Also the Chilean seismic design codes pre and post 2010 Maule earthquake are reviewed and the practice in seismic design vs Performance Based Design is presented. Performance Based Design procedures are not included in the Chilean seismic design code for buildings, nevertheless the earthquake experience has shown that the response of the Chilean buildings has been close to operational. This can be attributed to the fact that the drift of most engineered buildings designed in accordance with the Chilean practice falls below 0.5%. It is also known by experience that for frequent and even occasional earthquakes, buildings responded elastically and thus with "fully operational" performance. Taking the above into account, it can be said that, although the "basic objective" of the Chilean code is similar to the SEAOC VISION2000 criteria, the actual performance for normal buildings is closer to the "Essential/Hazardous objective".

A review of seismic design recommendations in Jordan

  • Saffarini, Hassan S.
    • Structural Engineering and Mechanics
    • /
    • 제9권3호
    • /
    • pp.257-268
    • /
    • 2000
  • The seismic design recommendations of the Jordan Code for Loads and Forces (JC) are evaluated, based on comparisons with analytical studies and the Uniform Building Code. It was established that the overall safety ensured by the implementation of these recommendations is not consistent with the established seismic risk in Jordan and the intended objectives of the code. A new zoning map is proposed with effective peak ground acceleration values. The different period formulae of the code were studied and were found to grossly underestimate the fundamental period when compared with analytically derived values or other codes' formulae. Other factors including the dynamic, soil, importance and behavior factors are discussed. It was determined that the JC's lateral load distribution formulae clearly lead to smaller internal forces than both dynamic analysis and UBC loads, even when those loads are normalized to give the same base shear. The main reason for this is attributed to the limited allowance for a backlash force in the JC.

Assessment of seismic fragility curves for existing RC buildings in Algiers after the 2003 Boumerdes earthquake

  • Mehani, Youcef;Bechtoula, Hakim;Kibboua, Abderrahmane;Naili, Mounir
    • Structural Engineering and Mechanics
    • /
    • 제46권6호
    • /
    • pp.791-808
    • /
    • 2013
  • The main purpose of this paper is to develop seismic fragility curves for existing reinforced concrete, RC, buildings based on the post earthquake field survey and the seismic performance using capacity design. Existing RC buildings constitute approximately 65% of the total stock in Algiers. This type of buildings, RC, was widely used in the past and chosen as the structural type for the future construction program of more than 2 millions apartments all over Algeria. These buildings, suffered moderate to extensive damage after the 2003 Boumerdes earthquake, on May 21st. The determination of analytical seismic fragility curves for low-rise and mid-rise existing RC buildings was carried out based on the consistent and complete post earthquake survey after that event. The information on the damaged existing RC buildings was investigated and evaluated by experts. Thirty four (34) communes (districts) of fifty seven (57), the most populated and affected by earthquake damage were considered in this study. Utilizing the field observed damage data and the Japanese Seismic Index Methodology, based on the capacity design method. Seismic fragility curves were developed for those buildings with a large number data in order to get a statistically significant sample size. According to the construction period and the code design, four types of existing RC buildings were considered. Buildings designed with pre-code (very poor structural behavior before 1955), Buildings designed with low code (poor structural behavior, between 1955-1981), buildings designed with medium code (moderate structural behavior, between 1981-1999) and buildings designed with high code (good structural behavior, after 1999).

동일한 지진구역에 위치한 건축 구조물의 내진거동을 기초로한 기존 내진설계 평가 (Evaluation of the Current Seismic Design Procedures Based on the Seismic Performance of the Building Located in the Same Seismic Area)

  • 한상환;이리형
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1997년도 봄 학술발표회 논문집
    • /
    • pp.160-166
    • /
    • 1997
  • Current Seismic Design Procedure has been developed and improved mostly based on the experiences of the past earthquakes. Many engineers and researchers believe that the seismic codes and provisions are adequate for the basic objective of the code which is "life-safe". However they doubt the performance of the structure during the earthquake. The seismic code seems the black box for the designers which means it is not transparent since the designer can not predict the level of the damage of the structure under future earthquakes. This purpose of this study is to check the validity of the current seismic design procedures. Two structures with different heights are designed and their seismic performances are evaluated for this purpose. Both structures are assumed to be located at the same strong seismic zone.

  • PDF