• Title/Summary/Keyword: seismic damper

Search Result 541, Processing Time 0.027 seconds

Passive control of seismically excited structures by the liquid column vibration absorber

  • Konar, Tanmoy;Ghosh, Aparna Dey
    • Structural Engineering and Mechanics
    • /
    • v.36 no.5
    • /
    • pp.561-573
    • /
    • 2010
  • The potential of the liquid column vibration absorber (LCVA) as a seismic vibration control device for structures has been explored in this paper. In this work, the structure has been modeled as a linear, viscously damped single-degree-of-freedom (SDOF) system. The governing differential equations of motion for the damper liquid and for the coupled structure-LCVA system have been derived from dynamic equilibrium. The nonlinear orifice damping in the LCVA has been linearized by a stochastic equivalent linearization technique. A transfer function formulation for the structure-LCVA system has been presented. The design parameters of the LCVA have been identified and by applying the transfer function formulation the optimum combination of these parameters has been determined to obtain the most efficient control performance of the LCVA in terms of the reduction in the root-mean-square (r.m.s.) displacement response of the structure. The study has been carried out for an example structure subjected to base input characterized by a white noise power spectral density function (PSDF). The sensitivity of the performance of the LCVA to the coefficient of head loss and to the tuning ratio have also been examined and compared with that of the liquid column damper (LCD). Finally, a simulation study has been carried out with a recorded accelerogram, to demonstrate the effectiveness of the LCVA.

Functionally upgraded passive devices for seismic response reduction

  • Chen, Genda;Lu, Lyan-Ywan
    • Smart Structures and Systems
    • /
    • v.4 no.6
    • /
    • pp.741-757
    • /
    • 2008
  • The research field of structural control has evolved from the development of passive devices since 1970s, through the intensive investigation on active systems in 1980s, to the recent studies of semi-active control systems in 1990s. Currently semi-active control is considered most promising in civil engineering applications. However, actual implementation of semi-active devices is still limited due mainly to their system maintenance and associated long-term reliability as a result of power requirement. In this paper, the concept of functionally upgraded passive devices is introduced to streamline some of the state-of-the-art researches and guide the development of new passive devices that can mimic the function of their corresponding semi-active control devices for various applications. The general characteristics of this special group of passive devices are discussed and representative examples are summarized. Their superior performances are illustrated with cyclic and shake table tests of two example devices: mass-variable tuned liquid damper and friction-pendulum bearing with a variable sliding surface curvature.

GA-based Optimal Fuzzy Control of Semi-Active Magneto-Rheological Dampers for Seismic Performance Improvement of Adjacent Structures (인접구조물의 내진성능개선을 위한 준능동 MR감쇠기의 GA-최적퍼지제어)

  • Yun, Jung-Won;Park, Kwan-Soon;Ok, Seung-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.4
    • /
    • pp.69-79
    • /
    • 2011
  • This paper proposes a GA-based optimal fuzzy control technique for the vibration control of earthquakeexcited adjacent structures interconnected with semi-active magneto-rheological(MR) dampers. Rule-based fuzzy logic controllers are designed first by implementing heuristic knowledge and the genetic algorithm(GA) is then introduced to optimally tune the fuzzy controllers for enhancing the seismic performance of semi-active control system. For practical implementation, the fuzzy controller simply uses locally measured responses of the dampers involved and directly returns the input voltage to the magneto-rheological dampers in real time through the fuzzy inference mechanism. The local measurement based fuzzy controller provides optimal damping force in a decentralized manner so that it does not require a primary central controller unlike the conventional semi-active control techniques. As a result, it can avoid the unbridgeable discrepancy between the desired control force and the actual damper force that may occur in the conventional control approaches. The validity and effectiveness of the proposed control method are shown numerically on two 20-story earthquake-excited buildings interconnected with MR dampers.

Capacity Development of Existing Frame by Aramid Sheet and Energy Dissipation Device (아라미드 시트와 에너지 소산 장치에 의한 기존 골조의 능력 향상)

  • Lee, Hyun-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.5
    • /
    • pp.112-119
    • /
    • 2015
  • In this paper, the strengthening method was proposed for improving the seismic performance of the vulnerable structural frames. To improve the brittle characteristics of columns, aramid fiber sheet was used for the lateral confinement of columns. And to introduce the energy dissipation capacity, a steel damper with S-shaped struts was installed. By making the unreinforced and reinforced specimens with full size specimens were evaluated for lateral load resistance capacity. It was confirmed the strengthening effects by the evaluation of failure shape, strength, stiffness degradation, and energy dissipation capacity. Also from the FE analysis using ABAQUS, the hysteretic behavior of the specimens were predicted and evaluated.

A Study on Optimum Mass of TMD for Improving Seismic Response Control Performance of Retractable-Roof Spatial Structure (개폐식 대공간 구조물의 지진 응답 제어 성능 향상을 위한 TMD의 최적 질량에 관한 연구)

  • Kim, Dong-Hyung;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.3
    • /
    • pp.93-100
    • /
    • 2019
  • In this study, the retractable-roof spatial structure was chosen as the analytical model and a tuned mass damper (TMD) was installed in the analytical model in order to control the seismic response. The analysis model is mainly consisted of runway trusses (RT) and transverse trusses (TT), and the displacement response was analyzed by installing TMD on those trusses. The mass of the single TMD which is installed in the analytical model was set to 1% of the total structure mass and the total TMD mass ratio was set to be 8% or 6%. In addition, the mass of a single TMD was varied depending on the number of installations. As a result of analyzing the optimal number of installations of TMD, the displacement response was reduced in all cases compared to the case without TMD. Above all, the case with 8 TMDs was the most effective in reducing he displacement response. However, in this case, as the load on the upper structure of the retractable-roof spatial structure increases, the total mass ratio of TMD was maintained and the number of TMDs was increased to reduce the mass ratio of one TMD.

A Study for Damping Application to Response-controlled Structure

  • Shinozaki, Yozo;Mogi, Yoshihiro;Ota, Masaaki;Yoshikawa, Hiroaki
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.2
    • /
    • pp.149-164
    • /
    • 2021
  • Most of high-rise buildings in Japan*1 are structure with damping systems recently. The design procedure is performance-based design (PBD), which is based on the nonlinear response history procedure (NRHP) using 2 or 3-dimentional frame model. In addition, hysteretic property of steel plates or velocity-dependent property of viscous dampers are common practice for the damping system. However, for the selection of damping system, the easy dynamic analysis of recent date may lead the most of engineers to focus attention on the maximum response only without thinking how it shakes. By nature, the seismic design shall be to figure out the action of inertia forces by complex & dynamic loads including periodic and pulse-like characteristics, what we call seismic ground motion. And it shall be done under the dynamic condition. On the contrary, we engineers engineers have constructed the easy-to-use static loads and devoted ourselves to handle them. The structures with damping system shall be designed considering how the stiffness & damping to be applied to the structures against the inertia forces with the viewpoint of dynamic aspect. In this paper we reconsider the role of damping in vibration and give much thought to the basic of shake with damping from a standpoint of structural design. Then, we present some design examples based on them.

Experimental investigations on resilient beam-column end-plate connection with structural fuse

  • Arunkumar Chandrasekaran;Umamaheswari Nambiappan
    • Steel and Composite Structures
    • /
    • v.47 no.3
    • /
    • pp.315-337
    • /
    • 2023
  • The steel structure is an assembly of individual structural members joined together by connections. The connections are the focal point to transfer the forces which is susceptible to damage easily. It is challenging to replace the affected connection parts after an earthquake. Hence, steel plates are utilised as a structural fuse that absorbs connection forces and fails first. The objective of the present research is to develop a beam-column end plate connection with single and dual fuse and study the effect of single fuse, dual fuse and combined action of fuse and damper. In this research, seismic resilient beam-column end plate connection is developed in the form of structural fuse. The novel connection consists of one main fuse was placed horizontally and secondary fuse was placed vertically over main fuse. The specimens are fabricated with the variation in number of fuse (single and dual) and position of fuse (beam flange top and bottom). From the fabricated ten specimens five specimens were loaded monotonically and five cyclically. The experimental results are compared with Finite Element Analysis results of Arunkumar and Umamaheswari (2022). The results are critically assessed in the aspect of moment-rotation behaviour, strain in connection components, connection stiffness, energy dissipation characteristics and ductility. While comparing the performance of total five specimens, the connection with fuse exhibited superior performance than the conventional connection. An equation is proposed for the moment of resistance of end-plate connection without and with structural fuse.

Displacement Response Analysis of Twisted Irregular Buildings According to TMD (TMD 적용에 따른 Twisted 비정형 건축물의 변위 응답 분석)

  • Yoo, Sang-Ho;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.24 no.1
    • /
    • pp.89-98
    • /
    • 2024
  • In this study, we investigated the dynamic characteristics of three irregular building models to analyze the effectiveness of displacement response control with Tuned Mass Damper (TMD) installation in twisted irregular buildings. The three irregular models were developed with a fixed angle of twist per story at one degree, subjected to three historical seismic loads and resonant harmonic loads. By designing TMDs with linear and dashpot attributes, we varied the total mass ratio of the installed TMDs from 0.00625% to 1.0%, encompassing a total of 10 values. Two TMDs were installed at the center of the top story of the analysis model in both X and Y directions to evaluate displacement response control performance based on TMD installation. Our findings suggest that the top displacement response control performance was most effective when a 1.0% TMD was installed at the top layer of the analysis model.

Performance Evaluation of MR Damper using Equivalent Linearization Technique (선형화 기법을 이용한 MR 감쇠기 성능평가)

  • Lee, Sang-Hyun;Min, Kyung-Won;Lee, Myoung-Kyu
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.2 s.42
    • /
    • pp.1-6
    • /
    • 2005
  • The purpose of this paper is to evaluate the performance of an MR fluid damper for seismic vibration control of a structure in terms of equivalent linear damping based on linearization technique and to experimentally verify the results from linearization technique by comparing them to those from system identification testing of a building structure with the MR damper. First, among various models for the MR damper, the equivalent damping is estimated for the Bingham model which is mathematically simple. Second, the transfer function of a building structure with the MR damper is obtained by performing shaking table tests and the damping matrices of the structure are constructed using the modal information obtained by the transfer function. It is observed that the damping mathematically estimated using linearization technique for the Bingham model matches well with the damping coefficient experimentally obtained by system identification.

Performance Comparison of Steel Dampers with or without Lateral Deformation Prevention Details and Strut Shapes (횡변형 방지 상세 유무 및 스트럿 형상에 따른 강재댐퍼의 성능 비교)

  • Lee, Hyun-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.66-73
    • /
    • 2022
  • In this study, the experimental results of 7 dampers with the same strut height and similar cross-sectional area were compared based on the existing research results on steel dampers with rocking behavior. As steel plate dampers, SI-260, SV-260, SS-260 without Lateral deformation prevention detail(Ldpd), I-1, V-1, S-1 with Ldpd, and R20-260 with steel rod damper were evaluated. In addition, R15-260, which has a cross-sectional area of 0.56 times than other dampers, was also reviewed to appropriately evaluate the behavior of the steel rod damper. An important study result is the application superiority of the steel rod damper, which improved the unidirectional behavior of the steel plate dampers. This was proved in the moment-resistance capacity and displacement ratio evaluation. As a result of the evaluation, the R20-260, a steel bar damper, was evaluated as having the best performance. In addition, it is judged to have sufficient seismic resistance as it shows deformability up to a displacement ratio of 2.0.