• 제목/요약/키워드: seismic damage analysis

검색결과 667건 처리시간 0.027초

A displacement-based seismic design method with damage control for RC buildings

  • Ayala, A. Gustavo;Castellanos, Hugo;Lopez, Saul
    • Earthquakes and Structures
    • /
    • 제3권3_4호
    • /
    • pp.413-434
    • /
    • 2012
  • This paper presents a displacement-based seismic design method with damage control, in which the targets for the considered performance level are set as displacements and a damage distribution is proposed by the designer. The method is based on concepts of basic structural dynamics and of a reference single degree of freedom system associated to the fundamental mode with a bilinear behaviour. Based on the characteristics of this behaviour curve and on the requirements of modal spectral analysis, the stiffness and strength of the structural elements of the structure satisfying the target design displacement are calculated. The formulation of this method is presented together with the formulations of two other existing methods currently considered of practical interest. To illustrate the application of the proposed method, 5 reinforced concrete plane frames: 8, 17 and 25 storey regular, and 8 and 12 storey irregular in elevation. All frames are designed for a seismic demand defined by single earthquake record in order to compare the performances and damage distributions used as design targets with the corresponding results of the nonlinear step by step analyses of the designed structures subjected to the same seismic demand. The performances and damage distributions calculated with these analyses show a good agreement with those postulated as targets.

기존 학교 건축물의 내진성능평가 및 보강방안 제안 (Proposed Seismic Performance Evaluation Enhancement for Existing School Building)

  • 황지훈;장정현;양경석;최재혁
    • 교육시설 논문지
    • /
    • 제19권4호
    • /
    • pp.29-38
    • /
    • 2012
  • Recently large scale earthquake s are occurred around the world following the damage of buildings. So the interest of preparing for earthquake seismic design and seismic performance has becoming high. School buildings are though used for educational purpose; they are also used as emergency shelter for local residents during earthquake disaster. However, the current seismic design ratio of our country (Korea) is 3.7% and if massive earthquake is occurred it follows a serious damage. In order to overcome this situation, seismic performance evaluation is carried out for existing school building and an accurate and appropriate seismic retrofit is required based on performance evaluation to upgrade the existing school buildings. In this paper, nonlinear static analysis on existing school buildings for ATC-40 and FEMA-356 are carried out using the capacity spectrum method to evaluate seismic performance and to determine the need for retrofitting. In addition, after reinforcement to verify the effect of retrofit enhance the seismic performance is applied the seismic performance evaluation is carried out to verify the effect of seismic retrofit time history analysis using nonlinear dynamic analysis is also performed and nonlinear behavior of earthquake load of seismic retrofit of structures was also investigated.

Reliability-based Life Cycle Cost Analysis for Optimal Seismic Upgrading of Bridges

  • Alfredo H-S. Ang;Cho, Hyo-Nam;Lim, Jong-Kwon;An, Joong-San
    • Computational Structural Engineering : An International Journal
    • /
    • 제1권1호
    • /
    • pp.59-69
    • /
    • 2001
  • This study is intended to propose a systematic approach for reliability-based assessment of life cycle cost (LCC) effectiveness and economic efficiency for cost-effective seismic upgrading of existing bridges. The LCC function is expressed as the sum of the upgrading cost and all the discounted life cycle damage costs, which is formulated as a function of the Park-Ang damage index and structural damage probability. The damage costs are expressed in terms of direct damage costs such as repair/replacement costs, human losses and property damage costs, and indirect damage costs such as road user costs and indirect regional economic losses. For dealing with a variety of uncertainties associated with earthquake loads and capacities, a simulation-based reliability approach is used. The SMART-DRAIN-2DX, which is a modified version of the well-known DRAIN-2DX, is extended by incor-porating LCC analysis based on the LCC function developed in the study. Economic efficiencies for optimal seismic upgradings of the continuous PC segmental bridges are assessed using the proposed LCC functions and benefit-cost ratio.

  • PDF

The dynamic response and seismic damage of single-layer reticulated shells subjected to near-fault ground motions

  • Zhang, Ming;Parke, Gerry;Chang, Zhiwang
    • Earthquakes and Structures
    • /
    • 제14권5호
    • /
    • pp.399-409
    • /
    • 2018
  • The dynamic response and seismic damage of single-layer reticulated shells in the near field of a rupturing fault can be different from those in the far field due to the different characteristics in the ground motions. To investigate the effect, the dynamic response and seismic damage of this spatial structures subjected to two different ground motions were numerically studied by nonlinear dynamic response analysis. Firstly, twelve seismic waves with an apparent velocity pulse, including horizontal and vertical seismic waves, were selected to represent the near-fault ground motion characteristics. In contrast, twelve seismic records recorded at the same site from other or same events where the epicenter was far away from the site were employed as the far-fault ground motions. Secondly, the parametric modeling process of Kiewitt single-layer reticulated domes using the finite-element package ANSYS was described carefully. Thirdly, a nonlinear time-history response analysis was carried out for typical domes subjected to different earthquakes, followed by analyzing the dynamic response and seismic damage of this spatial structures under two different ground motions based on the maximum nodal displacements and Park-Ang index as well as dissipated energy. The results showed that this spatial structures in the near field of a rupturing fault exhibit a larger dynamic response and seismic damage than those obtained from far-fault ground motions. In addition, the results also showed that the frequency overlap between structures and ground motions has a significant influence on the dynamic response of the single-layer reticulated shells, the duration of the ground motions has little effects.

취약도 해석을 위한 철근콘크리트 교각의 지진손상 평가인자 결정 (Development of Seismic Damage Evaluation factor of Reinforced Concrete Pier for Fragility Analysis)

  • 고현무;이지호;강중원;조호현
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2002년도 추계 학술발표회 논문집
    • /
    • pp.308-315
    • /
    • 2002
  • Fragility analysis is widely used for the seismic safety evaluation of a structure. In fragility analysis, damage evaluation is a crucial factor. Most of the present fragility analyses use the representative responses such as displacement and absorbed hysteretic energy as a tool of damage evaluation. But damage evaluation method that can represent the local damage of a structure is required in the case of piers of which the local damage can cause the whole failure of bridge system. Therefore this study proposes a damage index, which can represent the distribution and magnitude of local damage by using the Lee and Fenves'plastic-damage model. Using the proposed damage index, fragility curves and damage probability matrix of pier are produced and fragility analysis is performed.

  • PDF

ISSUES IN PROBABILISTIC SEISMIC HAZARD ANALYSIS FOR NUCLEAR FACILITIES IN THE US

  • Mcguire, Robin K.
    • Nuclear Engineering and Technology
    • /
    • 제41권10호
    • /
    • pp.1235-1242
    • /
    • 2009
  • Probabilistic seismic hazard analysis (PSHA) is routinely conducted in the US for nuclear plants, for the determination of appropriate seismic design levels. These analyses incorporate uncertainties in earthquake characteristics in stable continental regions (where direct observations of large earthquakes are rare), in estimates of rock motions, in site effects on strong shaking, and in the damage potential of seismic shaking for engineered facilities. Performance goals related to the inelastic deformation of individual components, and related to overall seismic core damage frequency, are used to determine design levels. PSHA has the ability to quantify and document the important uncertainties that affect seismic design levels, and future work can be guided toward reducing those uncertainties.

Utilization of deep learning-based metamodel for probabilistic seismic damage analysis of railway bridges considering the geometric variation

  • Xi Song;Chunhee Cho;Joonam Park
    • Earthquakes and Structures
    • /
    • 제25권6호
    • /
    • pp.469-479
    • /
    • 2023
  • A probabilistic seismic damage analysis is an essential procedure to identify seismically vulnerable structures, prioritize the seismic retrofit, and ultimately minimize the overall seismic risk. To assess the seismic risk of multiple structures within a region, a large number of nonlinear time-history structural analyses must be conducted and studied. As a result, each assessment requires high computing resources. To overcome this limitation, we explore a deep learning-based metamodel to enable the prediction of the mean and the standard deviation of the seismic damage distribution of track-on steel-plate girder railway bridges in Korea considering the geometric variation. For machine learning training, nonlinear dynamic time-history analyses are performed to generate 800 high-fidelity datasets on the seismic response. Through intensive trial and error, the study is concentrated on developing an optimal machine learning architecture with the pre-identified variables of the physical configuration of the bridge. Additionally, the prediction performance of the proposed method is compared with a previous, well-defined, response surface model. Finally, the statistical testing results indicate that the overall performance of the deep-learning model is improved compared to the response surface model, as its errors are reduced by as much as 61%. In conclusion, the model proposed in this study can be effectively deployed for the seismic fragility and risk assessment of a region with a large number of structures.

Study on Integrity Assessment of Pile Foundation Based on Seismic Observation Records

  • KASHIWA, Hisatoshi
    • 국제초고층학회논문집
    • /
    • 제9권4호
    • /
    • pp.369-376
    • /
    • 2020
  • Given the importance of quickly recovering livelihoods and economic activity after an earthquake, the seismic performance of the pile foundation is becoming more critical than before. In order to promote seismic retrofit of the pile foundations, it is necessary to develop a method for evaluating the seismic performance of the pile foundation based on the experimental data. In this paper, we focus on the building that was suffered severe damage to the pile foundation, conduct simulation analyses of the building, and report the results of evaluating the dynamic characteristics when piles are damaged using a system identification method. As a result, an analysis model that can accurately simulate the behavior of the damaged building during an earthquake was constructed, and it was shown that the system identification method could extract dynamic characteristics that may damage piles.

Multiple characteristic response damage analysis of large-span space structures based on equivalent damping ratio

  • Wei, Jun;Yang, Qingshun;Zhou, Lexiang;Chen, Fei
    • Earthquakes and Structures
    • /
    • 제23권4호
    • /
    • pp.339-352
    • /
    • 2022
  • Due to the large volume and generally as a public building, the damage of large-span space structures under various non-conventional loads will cause greater economic losses, casualties, and social impacts, etc. Therefore, it is particularly important to evaluate the seismic performance of large-span space structures. This paper taked a multipurpose sports center as an example and considered its synergistic deformation based on the method of equivalent damping ratio. Furthermore, The ABAQUS software was used to analyze the time-history and energy response of the multipurpose sports center under the action of rare earthquakes, and proposed a quantitative damage index to assess the overall damage of the structure. Finally, the research results indicated that the maximum inter-story drift ratio of the multipurpose sports center under the action of rare earthquakes was less than its limit value. The frame beams presented different degrees of damage, but the key members were basically in an elastic state. The bearing capacity did not reach the limit value, which satisfied the intended seismic performance target. This study taked an actual case as an example and proposed a relevant damage evaluation system, which provided some reference for the analysis of the seismic performance of large-span space structures.

Analysis on damage of RC frames retrofitted with buckling-restrained braces based on estimation of damage index

  • Liu, Ruyue;Yang, Yong
    • Structural Engineering and Mechanics
    • /
    • 제70권6호
    • /
    • pp.781-791
    • /
    • 2019
  • Earthquakes most often induce damage to structures, resulting in the degradation or deterioration of integrity. In this paper, based on the experimental study on 5 RC frames with different span length and different layout of buckling-restrained braces, the seismic damage evaluation law of RC frame with buckling-restrained braces was analyzed, and then the seismic damage for different specimens was calculated using different damage models to study the damage evolution. By analyzing and comparing the observation in test and the calculated results, it could be found that, damage evolution models including Gosain model, Hwang model as well as Ou model could better simulate the development of damage during cyclic loading. Therefore, these 3 models were utilized to analyze the development of damage to better demonstrate the evolution law for structures with different layout of braces and under different axial compression ratios. The results showed that from all layouts of braces studied, the eccentrically braced frame behaved better under larger deformation with the damage growing slowly. It could be deduced that the link beam benefited the seismic performance of structure and alleviated the damage by absorbing high values of energy.