• 제목/요약/키워드: seismic coefficient

검색결과 306건 처리시간 0.022초

Ductility demand of partially self-centering structures under seismic loading: SDOF systems

  • Hu, Xiaobin;Zhang, Yunfeng
    • Earthquakes and Structures
    • /
    • 제4권4호
    • /
    • pp.365-381
    • /
    • 2013
  • In this paper, a numerical simulation study was conducted on the seismic behavior and ductility demand of single-degree-of-freedom (SDOF) systems with partially self-centering hysteresis. Unlike fully self-centering systems, partially self-centering systems display noticeable residual displacement after unloading is completed. Such partially self-centering behavior has been observed in a number of recently researched self-centering structural systems with energy dissipation devices. It is thus of interest to examine the seismic performance such as ductility demand of partially self-centering systems. In this study, a modified flag-shaped hysteresis model with residual displacement is proposed to represent the hysteretic behavior of partially self-centering structural systems. A parametric study considering the effect of variations in post-yield stiffness ratio, energy dissipation coefficient, and residual displacement ratio on the displacement ductility demand of partially self-centering systems was conducted using a suite of 192 scaled ground motions. The results of this parametric study reveal that increasing the post-yield stiffness, energy dissipation coefficient or residual displacement ratio of the partially self-centering systems generally leads to reduced ductility demand, especially for systems with lower yield strength.

Bound of aspect ratio of base-isolated buildings considering nonlinear tensile behavior of rubber bearing

  • Hino, J.;Yoshitomi, S.;Tsuji, M.;Takewaki, I.
    • Structural Engineering and Mechanics
    • /
    • 제30권3호
    • /
    • pp.351-368
    • /
    • 2008
  • The purpose of this paper is to propose a simple analysis method of axial deformation of base-isolation rubber bearings in a building subjected to earthquake loading and present its applicability to the analysis of the bound of the aspect ratio of base-isolated buildings. The base shear coefficient is introduced as a key parameter for the bound analysis. The bound of the aspect ratio of base-isolated buildings is analyzed based on the relationship of the following four quantities; (i) ultimate state of the tensile stress of rubber bearings based on a proposed simple recursive analysis for seismic loading, (ii) ultimate state of drift of the base-isolation story for seismic loading, (iii) ultimate state of the axial compressive stress of rubber bearings under dead loads, (iv) prediction of the overturning moment at the base for seismic loading. In particular, a new recursive analysis method of axial deformation of rubber bearings is presented taking into account the nonlinear tensile behavior of rubber bearings and it is shown that the relaxation of the constraint on the ultimate state of the tensile stress of rubber bearings increases the limiting aspect ratio.

On the improvement of inelastic displacement demands for near-fault ground motions considering various faulting mechanisms

  • Esfahanian, A.;Aghakouchak, A.A.
    • Earthquakes and Structures
    • /
    • 제9권3호
    • /
    • pp.673-698
    • /
    • 2015
  • This paper investigates inelastic seismic demands of the normal component of near-fault pulse-like ground motions, which differ considerably from those of far-fault ground motions and also parallel component of near-fault ones. The results are utilized to improve the nonlinear static procedure (NSP) called Displacement Coefficient Method (DCM). 96 near-fault and 20 far-fault ground motions and the responses of various single degree of freedom (SDOF) systems constitute the dataset. Nonlinear Dynamic Analysis (NDA) is utilized as the benchmark for comparison with nonlinear static analysis results. Considerable influences of different faulting mechanisms are observed on inelastic seismic demands. The demands are functions of the strength ratio and also the pulse period to structural period ratio. Simple mathematical expressions are developed to consider the effects of near-fault motion and fault type on nonlinear responses. Modifications are presented for the DCM by introducing a near-fault modification factor, $C_N$. In locations, where the fault type is known, the modifications proposed in this paper help to obtain a more precise estimate of seismic demands in structures.

부지응답해석을 이용한 지역별 대표 진도 산출 연구 (Typical Seismic Intensity Calculation for Each Region Using Site Response Analysis)

  • 안재광;손수원
    • 한국지반환경공학회 논문집
    • /
    • 제21권1호
    • /
    • pp.5-12
    • /
    • 2020
  • 지진원으로부터 전파되는 진동은 거리에 따른 감쇠와 지형 혹은 지질구조에 따라 지역마다 다른 증·감폭 특성을 가진다. 지진원에서 기반암까지의 전파되는 진동은 이격거리에 따른 감쇠의 영향이 크며, 이는 감쇠식을 통해 쉽게 추정할 수 있다. 하지만 지표면에 전달되는 진동 추정은 기반암 상부에 위치한 토층 고유주기의 영향을 받기에 위치별 지질정보 파악이 중요하다. 지질정보 기반 진도 추정을 위해 지반조사 자료가 필요하며, Vs 주상도가 없을 경우 표준관입시험을 통해 대상지반의 강도 및 특성 파악에 주로 사용된다. 국토지반정보 포털시스템에서는 국내 지반에서 수행된 지반조사자료를 통합하여 관리하고 있으며, 표준관입시험 정보가 약 40만공을 구축되어 있다. 본 연구에서는 지반정보를 기반으로 체감형 진도정보 산출을 위해 권역별로 증폭계수 정량화 가능성을 검토하였다. 이때 SPT-N치를 자료를 통해 전단파 주상도를 생성하고, 대상지역에 지반응답해석을 수행하였다. 권역별 증폭계수와 지진파의 주기별 진도 분포는 해석방법 및 권역설정에 따라 큰 차이를 보였다.

Probabilistic seismic hazard assessment of Sanandaj, Iran

  • Ghodrati Amiri, Gholamreza;Andisheh, Kaveh;Razavian Amrei, Seyed Ali
    • Structural Engineering and Mechanics
    • /
    • 제32권4호
    • /
    • pp.563-581
    • /
    • 2009
  • In this paper, the peak horizontal ground acceleration over the bedrock (PGA) is calculated by a probabilistic seismic hazard assessment (PSHA). For this reason, at first, all the occurred earthquakes in a radius of 200 km of Sanandaj city have been gathered. After elimination of the aftershocks and foreshocks, the main earthquakes were taken into consideration to calculate the seismic parameters (SP) by Kijko (2000) method. The seismotectonic model of the considered region and the seismic sources of the region have been modeled. In this research, Sanandaj and its vicinity has been meshed as an 8 (vertical lines) * 10 (horizontal lines) and the PGA is calculated for each point of the mesh using the logic tree method and the five attenuation relationships (AR) with different weighted coefficient. These calculations have been performed by the Poisson distribution of four hazard levels. Then by using it, four regional maps of the seismic hazard regions have been provided for Sanandaj and its vicinity. The results show that the maximum and minimum value of PGA for the return periods of 75, 225, 475, 2475 years are (0.114, 0.074) (0.157, 0.101), (0.189, 0.121) and (0.266, 0.170), respectively.

다중기기 취약도곡선의 지진상관계수 조합 절차 (Combination Procedure for Seismic Correlation Coefficient in Fragility Curves of Multiple Components)

  • 김정한;김시영;최인길
    • 한국지진공학회논문집
    • /
    • 제24권3호
    • /
    • pp.141-148
    • /
    • 2020
  • For the important safety system, two or more units of identical equipment or redundant components with similar function were installed to prevent abnormal failure. If the failure probability of such equipment is independent, this redundancy could increase the system safety remarkably. However, if the failure of each component is highly correlated by installing in a structure or experiencing an earthquake event, the expected redundancy effect will decrease. Therefore, the seismic correlation of the equipment should be evaluated quantitatively for the seismic probabilistic safety assessment. The correlation effect can be explained in the procedure of constructing fragility curves. In this study, several methodologies to quantify the seismic correlation in the failure probability calculation for multiple components were reviewed and two possible ways considering the realistic situation were selected. Simple examples were tested to check the applicability of these methods. The conversion method between these two methods was suggested to render the evaluation using the advantages of each method possible.

내진시험을 통한 IRB 시스템의 성능 평가 (Performance Evaluation of IRB System Using Seismic Isolation Test)

  • 박영기;하성훈;우제관;최승복;김현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.401-406
    • /
    • 2013
  • This paper presents experimental evaluation of IRE (isolation roller bearing) seismic isolation device. From the combination of base isolation on the IRE system displacement response spectrum and acceleration response spectrum, the compressive strength and the coefficient of friction experiments. Also the IRE system is evaluated by environment test according to KS standards. Both the resonance and seismic experiments using a combination of the IRE and Natural Rubber Bearing (NRB) are performed in order to analyze the seismic isolation of the IRE system dynamic characteristics. For the given load and exciting frequency, the resonant frequency becomes lower, but the resonant magnification remains to be same. However, it is shown that when we consider the IRE only, the vibration on the table with the horizontal movement and the independent horizontal displacement due to the rolling motion of the plate and roller are significantly reduced. This result verifies that the proposed optimal design method of the IRE system is very effective.

  • PDF

Lateral earth pressure and bending moment on sheet pile walls due to uniform surcharge

  • Singh, Akshay Pratap;Chatterjee, Kaustav
    • Geomechanics and Engineering
    • /
    • 제23권1호
    • /
    • pp.71-83
    • /
    • 2020
  • Cantilever sheet pile walls are subjected to surcharge loading located on the backfill soil and at different distances from the top of the wall. The response of cantilever sheet pile walls to surcharge loadings at varying distances under seismic conditions is scarce in literature. In the present study, the influence of uniform surcharge load on cantilever sheet pile wall at varying distances from the top of the wall under seismic conditions are analyzed using finite difference based computer program. The results of the numerical analysis are presented in non-dimensional form like variation of bending moment and horizontal earth pressure along the depth of the sheet pile walls. The numerical analysis has been conducted at different magnitudes of horizontal seismic acceleration coefficient and vertical seismic acceleration coefficients by varying the magnitude and position of uniform surcharge from the top of the wall for different embedded depths and types of soil. The parametric study is conducted with different embedded depth of sheet pile walls, magnitude of surcharge on the top of the wall and at a distance from the top of the wall for different angles of internal friction. It is observed that the maximum bending moment increases and more mobilization of earth pressure takes place with increase in horizontal seismic acceleration coefficients, magnitude of uniform surcharge, embedded depth and decrease in the distance of surcharge from the top of the wall in loose sand.

Experimental and numerical studies on seismic performance of hollow RC bridge columns

  • Han, Qiang;Zhou, Yulong;Du, Xiuli;Huang, Chao;Lee, George C.
    • Earthquakes and Structures
    • /
    • 제7권3호
    • /
    • pp.251-269
    • /
    • 2014
  • To investigate the seismic performance and to obtain quantitative parameters for the requirement of performance-based bridge seismic design approach, 12 reinforced concrete (RC) hollow rectangular bridge column specimens were tested under constant axial load and cyclic bending. Parametric study is carried out on axial load ratio, aspect ratio, longitudinal reinforcement ratio and transverse reinforcement ratio. The damage states of these column specimens were related to engineering limit states to determine the quantitative criteria of performance-based bridge seismic design. The hysteretic behavior of bridge column specimens was simulated based on the fiber model in OpenSees program and the results of the force-displacement hysteretic curves were well agreed with the experimental results. The damage states of residual cracking, cover spalling, and core crushing could be well related to engineering limit states, such as longitudinal tensile strains of reinforcement or compressive strains of concrete, etc. using cumulative probability curves. The ductility coefficient varying from 3.71 to 8.29, and the equivalent viscous damping ratio varying from 0.19 to 0.31 could meet the requirements of seismic design.

Pseudo seismic and static stability analysis of the Torul Dam

  • Karabulut, Muhammet;Genis, Melih
    • Geomechanics and Engineering
    • /
    • 제17권2호
    • /
    • pp.207-214
    • /
    • 2019
  • Dams have a great importance on energy and irrigation. Dams must be evaluated statically and dynamically even after construction. For this purpose, Torul dam built between years 2000 and 2007 Harsit River in Gümüşhane province, Turkey, is selected as an application. The Torul dam has 137 m height and 322 GWh annual energy production capacity. Torul dam is a kind of concrete face rock fill dam (CFRD). In this study, static and pseudo seismic stability of Torul dam was investigated using finite element method. Torul dam model is constituted by numerical stress analysis named Phase2 which is based on finite element method. The dam was examined under 11 different water filling levels. Thirteenth stage of the numerical model is corresponding full reservoir condition which water filled up under crest line. Besides, pseudo static coefficients for dynamic condition applied to the dam in fourteenth stage of the model. Stability assessment of the Torul dam has been discussed according to the displacement throughout the dam body. For static and pseudo seismic cases, the displacements in the dam body have been compared. The total displacements of the dam according to its the empty state increase dramatically at the height of the water level of about 70 m and above. Compared to the pseudo-seismic analysis, the displacement of dam at the full reservoir condition is approximately two times as high as static analysis.