• Title/Summary/Keyword: seismic bearing

Search Result 511, Processing Time 0.024 seconds

Analysis of seismic response of 3-span continuous curved bridges (3경간 연속곡선교의 지진응답 특성분석)

  • Kim, Sang-Hyo;Lee, Sang-Woo;Cho, Kwang-Il;Park, Boung-Kyu
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.380-387
    • /
    • 2005
  • Little has been understood about the seismic behavior of curved bridges due to the different structural characteristics compared to straight bridges. In this study, a simple numerical model, widely used for seismic analysis, is modified for a more realistic estimation of the seismic behavior. The seismic response of curved bridges obtained with the modified simple numerical model was compared with the result using a more sophisticated model to verify the feasibility. Seismic analyses were performed on three-span continuous curved bridges, which is a structural system widely used in highway structures. Numerical model of the three-span continuous curved bridges were subjected to seismic loads in diverse directions. From the result of the analysis. it was found that the direction of the seismic load have significant effect of the seismic behavior of curved bridges when the central angle exceeds 90 degrees.

  • PDF

Incorporation preference for rubber-steel bearing isolation in retrofitting existing multi storied building

  • Islam, A.B.M. Saiful;Jumaat, Mohd Zamin;Hussain, Raja Rizwan;Hosen, Md. Akter;Huda, Md. Nazmul
    • Computers and Concrete
    • /
    • v.16 no.4
    • /
    • pp.503-529
    • /
    • 2015
  • Traditionally, multi-story buildings are designed to provide stiffer structural support to withstand lateral earthquake loading. Introducing flexible elements at the base of a structure and providing sufficient damping is an alternative way to mitigate seismic hazards. These features can be achieved with a device known as an isolator. This paper covers the design of base isolators for multi-story buildings in medium-risk seismicity regions and evaluates the structural responses of such isolators. The well-known tower building for police personnel built in Dhaka, Bangladesh by the Public Works Department (PWD) has been used as a case study to justify the viability of incorporating base isolators. The objective of this research was to establish a simplified model of the building that can be effectively used for dynamic analysis, to evaluate the structural status, and to suggest an alternative option to handle the lateral seismic load. A finite element model was incorporated to understand the structural responses. Rubber-steel bearing (RSB) isolators such as Lead rubber bearing (LRB) and high damping rubber bearing (HDRB) were used in the model to insert an isolator link element in the structural base. The nonlinearities of rubber-steel bearings were considered in detail. Linear static, linear dynamic, and nonlinear dynamic analyses were performed for both fixed-based (FB) and base isolated (BI) buildings considering the earthquake accelerograms, histories, and response spectra of the geological sites. Both the time-domain and frequency-domain approaches were used for dynamic solutions. The results indicated that for existing multi-story buildings, RSB diminishes the muscular amount of structural response compared to conventional non-isolated structures. The device also allows for higher horizontal displacement and greater structural flexibility. The suggested isolation technique is able to mitigate the structural hazard under even strong earthquake vulnerability.

Response Modification Factor and Deformability for Structural Walls Designed with Different Details (구조 상세가 다른 벽체의 변형성능과 반응수정계수)

  • 오영훈;한상환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.959-964
    • /
    • 2001
  • This study investigates the seismic performance of bearing walls with rectangular sectional shape and specific details of reinforcements developed for 10 to 20-story apartment buildings in Korea. To investigate seismic behavior of structural walls, several specimens were experimented by author and laboratory test results by other researchers were collected and analysed. Structural behaviors of walls were evaluated by means of ductility, deformation, and strength capacities. For this purpose, thirty six specimens having different Properties such as aspect ratios and details were considered. Based on the results of this study, deformability of the walls with specific details is discussed. Also this study compares the response modification factor(R) for the bearing wall systems in seismic design provisions between Korea and United States.

  • PDF

RTS test study and numerical simulation of mechanical properties of HDR bearings

  • Peng, Tianbo;Wu, Yicheng
    • Earthquakes and Structures
    • /
    • v.13 no.3
    • /
    • pp.299-307
    • /
    • 2017
  • High Damping Rubber bearings (HDR bearings) have been used in the seismic design of bridge structures widely in China. In earthquakes, structural natural periods will be extended, seismic energy will be dissipated by this kind of bearing. Previously, cyclic loading method was used mainly for test studies on mechanical properties of HDR bearings, which cannot simulate real seismic responses. In this paper, Real-Time Substructure (RTS) test study on mechanical properties of HDR bearings was conducted and it was found that the loading rate effect was not negligible. Then the influence of peak acceleration of ground motion was studied. At last test results were compared with a numerical simulation in the OpenSees software framework with the Kikuchi model. It is found that the Kikuchi model can simulate real mechanical properties of HDR bearings in earthquakes accurately.

Performance of an isolated simply supported bridge crossing fault rupture: shake table test

  • Xiang, Nailiang;Yang, Huaiyu;Li, Jianzhong
    • Earthquakes and Structures
    • /
    • v.16 no.6
    • /
    • pp.665-677
    • /
    • 2019
  • This study utilizes large-scale shake table test to investigate the seismic performance of an isolated bridge with lead rubber bearings crossing an active fault. Two transverse restraining systems with and without shear keys are tested by applying spatially varying ground motions. It is shown that the near-fault span exhibits larger bearing displacement than the crossing-fault span. Bridge piers away from the fault rupture are more vulnerable than those adjacent to the fault rupture by attracting more seismic demand. It is also verified that the shear keys are effective in restraining the bearing displacement on the near-fault span, particularly under the large permanent ground displacement.

Seismic Response of Exterior RC Column-to-Steel Beam Connections (II. Strength and Deformation) (콘크리트 기둥-강재 보 외부 접합부의 내진성능(II 강도 및 변형))

  • 조순호
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.283-289
    • /
    • 2000
  • The panel shear and bearing strengths determining the seismic resistance of reinforced concrete column-to-steel beam connections are predicted by various methods for four previously tested exterior beam-column joints. The analytical approach to model the joint deformation is also examined. Several analyses incorporating the deformations of panel shear and bearing in the joint are demonstrated using a analyses incorporating the deformations of panel shear and bearing in the joint are demonstrated using a fairly simple connection model in the commercial packages such as Drain2dx and IDARC. The strength prediction results indicated that the ASCE method with the modifcation of the comprssion strut contribution is th most accurate. It is also considered that the analytical model presented including the joint deformation can be used for the overall analysis

  • PDF

Experimental Study on the Seismic Response of High-Rise RC Bearing-Wall Structures with Irregularity (고층 RC 벽식 비정정 구조물의 지진거동에 관한 실험적 연구)

  • 이한선;고동우
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.321-328
    • /
    • 2003
  • The objective of this study is to investigate the seismic response of high-rise RC bearing-wall structures with irregularity. For this purpose, three 1:12 scale 17-story reinforced concrete model structures were constructed according to the similitude law, in which the upper 15 stories have a bearing-wall system while the lower 2-story frames have three different layouts of the plan : The first one is a moment-resisting frame system, the second has a infilled shear wall with symmetric plan and the third has a infilled shear wall with eccentricity, Then, these models were subjected to a series of earthquake excitations. The test results show the followings: 1) the existence of shear wall reduced greatly shear deformation at the piloti frame, but has almost the negligible effect on the reduction of the overturning-moment angle, 2) the frame with shear wall resists most of overturning moment in severe earthquake, 3) the torsional behavior is almost independent of the translational, 4) the absorbed energy due to the overturning deformation has the largest portion in the total absorbed energy.

  • PDF

Comparison of seismic behavior of long period SDOF systems mounted on friction isolators under near-field earthquakes

  • Loghman, Vahid;Khoshnoudian, Faramarz
    • Smart Structures and Systems
    • /
    • v.16 no.4
    • /
    • pp.701-723
    • /
    • 2015
  • Friction isolators are one of the most important types of bearings used to mitigate damages of earthquakes. The adaptive behavior of these isolators allows them to achieve multiple levels of performances and predictable seismic behavior during different earthquake hazard levels. There are three main types of friction isolators. The first generation with one sliding surface is known as Friction Pendulum System (FPS) isolators. The double concave friction pendulum (DCFP) with two sliding surfaces is an advanced form of FPS, and the third one, with fully adaptive behavior, is named as triple concave friction pendulum (TCFP). The current study has been conducted to investigate and compare seismic responses of these three types of isolators. The structure is idealized as a two-dimensional single degree of freedom (SDOF) resting on isolators. The coupled differential equations of motion are derived and solved using state space formulation. Seismic responses of isolated structures using each one of these isolators are investigated under seven near fault earthquake motions. The peak values of bearing displacement and base shear are studied employing the variation of essential parameters such as superstructure period, effective isolation period and effective damping of isolator. The results demonstrate a more efficient seismic behavior of TCFP isolator comparing to the other types of isolators. This efficiency depends on the selected effective isolation period as well as effective isolation damping. The investigation shows that increasing the effective isolation period or decreasing the effective isolation damping improves the seismic behavior of TCFP compared to the other isolators. The maximum difference in seismic responses, the base shear and the bearing displacement, for the TCFP isolator are calculated 26.8 and 13.4 percent less than the DCFP and FPS in effective isolation damping equal to10%, respectively.

Parameters influencing seismic response of horizontally curved, steel, I-girder bridges

  • Linzell, Daniel G.;Nadakuditi, Venkata P.
    • Steel and Composite Structures
    • /
    • v.11 no.1
    • /
    • pp.21-38
    • /
    • 2011
  • This study examines the influence of curved, steel, I-girder bridge configuration on girder end reactions and cross frame member forces during seismic events. Simply-supported bridge finite element models were created and examined under seismic events mimicking what could be experienced in AASHTO Seismic Zone 2. Bridges were analyzed using practical ranges of: radius of curvature; girder and cross frame spacings; and lateral bracing configuration. Results from the study indicated that: (1) radius of curvature had the greatest influence on seismic response; (2) interior (lowest radius) girder reactions were heavily influenced by parameter variations and, in certain instances, uplift at their bearings could be a concern; (3) vertical excitation more heavily influenced bearing and cross frame seismic response; and (4) lateral bracing helped reduce seismic effects but using bracing along the entire span did not provide additional benefit over placing bracing only in bays adjacent to the supports.

Experimental research on seismic behavior of SRC-RC transfer columns

  • Wu, Kai;Xue, Jianyang;Nan, Yang;Zhao, Hongtie
    • Steel and Composite Structures
    • /
    • v.21 no.1
    • /
    • pp.157-175
    • /
    • 2016
  • It was found that the lateral stiffness changes obvious at the transfer position of the section configuration from SRC to RC. This particular behavior leads to that the transfer columns become as the important elements in SRC-RC hybrid structures. A comprehensive study was conducted to investigate the seismic behavior of SRC-RC transfer columns based on a low cyclic loading test of 16 transfer columns compared with 1 RC column. Test results shows three failure modes for transfer columns, which are shear failure, bond failure and bend failure. Its seismic behavior was completely analyzed about the failure mode, hysteretic and skeleton curves, bearing capacity deformation ability, stiffness degradation and energy dissipation. It is further determined that displacement ductility coefficient of transfer columns changes from 1.97 to 5.99. The stiffness of transfer columns are at the interval of SRC and RC, and hence transfer columns can play the role of transition from SRC to RC. All specimens show similar discipline of stiffness degradation and the process can be divided into three parts. Some specimens of transfer column lose bearing capacity swiftly after shear cracking and showed weak energy dissipation ability, but the others show better ability of energy dissipation than RC column.