• Title/Summary/Keyword: segregation potential

Search Result 57, Processing Time 0.029 seconds

Effects of the Doping Concentration of the Floating Gate on the Erase Characteristics of the Flash EEPROM's (Flash EEPROM에서 부유게이트의 도핑 농도가 소거 특성에 미치는 영향)

  • Lee, Jae-Ho;Shin, Bong-Jo;Park, Keun-Hyung;Lee, Jae-Bong
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.11
    • /
    • pp.56-62
    • /
    • 1999
  • All the cells on the whole memory array or a block of the memory array in the Flash EEPROM's are erased at the same time using Fowler-Nordheim (FN) tunneling. some of the cels are often overerased since the tunneling is not a self-limited process. In this paper, the optimum doping concentration of the floating gate solve the overerase problem has been studied. For these studies, N-type MOSFETs and MOS capacitors with various doping concentrations of the gate polysilicon have been fabricated and their electrical characteristics have been measured and analyzed. As the results of the experiment, it has been found that the overerase problem can be prevented if the doping concentration of the floating gate is low enough (i.e. below $1.3{\times}10^{18}/cm^3$). It is because the potential difference between the floating gate and the source is lowered due to the formation of the depletion layer in the floating gate and thus the erasing operation stops by itself after most of the electrons stored in the floating gate are extracted. On the other hand, the uniformity of the Vt and the gm has been significantly poor if the coping concentration of the floating, gate is too much lowered (i.e. below $1.3{\times}10^{17}/cm^3$), which is believed to be due to nonuniform loss of the dopants from the nonuniform segregation in the floating gate. Consequently, the optimum doping concentration of the floating gate to suppress the overerase problem and get the uniform Vt and has been found to range from $1.3{\times}10^{17}/cm^3$ to $1.3{\times}10^{18}/cm^3$ in the Flash EEPROM.

  • PDF

Uniformity of Large Gypsum-cemented Specimens Fabricated by Air Pluviation Method (낙사법으로 조성된 대형 석고 고결시료의 균질성)

  • Lee, Moon-Joo;Choi, Sung-Kun;Choo, Hyun-Wook;Cho, Yong-Soon;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.1
    • /
    • pp.91-99
    • /
    • 2008
  • The method to prepare the large cemented sand specimen for calibration chamber test by air-pluviation is investigated in this study. The uniformity of cemented specimen is evaluated by performing the CPTs, DMTs, and bender element tests in the calibration chamber. The sand particles, pre-wetted with 0.5% water content, are mixed with gypsum to provide the homogeneous coating of gypsum particles on the grain surface. It was shown that the pre-wetting of particle surface is effective to minimize the potential for segregation between sands and gypsum during air-pluviation. It was observed that the extreme void ratios ($e_{max}\;and\;e_{mix}$) of the mixture of pre-wetted sand and gypsum powder increase at lower gypsum content while those of the mixture of dry sand and gypsum decrease with increasing gypsum content. It was also shown from the test results that large cemented specimens reconstituted in calibration chamber by rainer system are quite uniform in vertical and horizontal directions.

Computer Simulation Studies of the Conformations of Polymeric Systems Near Surfaces as a Basic Research of the Elastomer (고무의 기초 연구로써 표면에 위치한 고분자 시스템 거동에 관한 수치모사 연구)

  • Kim, Myung-Yul;Park, Yung-Hoon
    • Elastomers and Composites
    • /
    • v.35 no.1
    • /
    • pp.29-37
    • /
    • 2000
  • In this study as a basic research of the elastomer, we show the results of the behavior of the two different chain length polymers in the melt confined between two impenetrable planes. The cubic lattice simulations are conducted in the canonical ensemble with a method that is a combination of reptation and crackshaft bond flip motions. A total of 680 chains which are 544 short chains comprising 10 beads and 136 long chains comprising 160 beads were placed in 20 lattice layers. It was assumed that there is no energetic interactions between covalently connected beads. while all other neighbors will interact with a truncated 6-12 Lennard-Jones potential. From the analysis of the simulation results, it was shown that purely entropic effects caused the shorter chains to partition preferentially to the surface. We also showed that the center of mass density of the shorter chains shows maximum near the surface. This is the opposite phenomena when compared to that of the longer chains. However, the segments of the shorter and the longer chains did not display any significant changes in bond order.

  • PDF

Self-Regeneration of Intelligent Perovskite Oxide Anode for Direct Hydrocarbon-Type SOFC by Nano Metal Particles of Pd Segregated (Pd 나노입자의 자가 회복이 가능한 지능형 페로브스카이트 산화물 음극의 직접 탄화수소계 SOFC 성능 평가)

  • Oh, Mi Young;Ishihara, Tatsumi;Shin, Tae Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.5
    • /
    • pp.345-350
    • /
    • 2018
  • Nanomaterials have considerable potential to solve several key challenges in various electrochemical devices, such as fuel cells. However, the use of nanoparticles in high-temperature devices like solid-oxide fuel cells (SOFCs) is considered problematic because the nanostructured surface typically prepared by deposition techniques may easily coarsen and thus deactivate, especially when used in high-temperature redox conditions. Herein we report the synthesis of a self-regenerated Pd metal nanoparticle on the perovskite oxide anode surface for SOFCs that exhibit self-recovery from their degradation in redox cycle and $CH_4$ fuel running. Using Pd-doped perovskite, $La(Sr)Fe(Mn,Pd)O_3$, as an anode, fairly high maximum power densities of 0.5 and $0.2cm^{-2}$ were achieved at 1,073 K in $H_2$ and $CH_4$ respectively, despite using thick electrolyte support-type cell. Long-term stability was also examined in $CH_4$ and the redox cycle, when the anode is exposed to air. The cell with Pd-doped perovskite anode had high tolerance against re-oxidation and recovered the behavior of anodic performance from catalytic degradation. This recovery of power density can be explained by the surface segregation of Pd nanoparticles, which are self-recovered via re-oxidation and reduction. In addition, self-recovery of the anode by oxidation treatment was confirmed by X-ray diffraction (XRD) and scanning electron microscopy (SEM).

Stomatal Control and Strategy Segregation to Drought Stress in Young Trees of Several Oak Species (수종 참나무속 유식물의 건조스트레스에 대한 기공저항의 조절과 전략의 분화)

  • 김종욱;김준호
    • The Korean Journal of Ecology
    • /
    • v.17 no.3
    • /
    • pp.241-249
    • /
    • 1994
  • Leaf diffusive resistance (LDR), stomatal density, length of guard cell and hair density of leaves of 6 oak species were determined under withdrawal of water, and their strategies of drought stress were analyzed by principal component analysis. LDR of Quercus acutissima, Q. aliena and Q. serrata increased earlier than those of the other species at high leaf water potential $({\Psi}_{leaf})$ or low water saturation deficit (WSD), which was an avoidance mechanism reducing damage by water stress. Q. variabilis with low stomatal density, small stomatal size and high hair density had avoidance mechanisms increasing LDR at high $({\Psi}_{leaf})$ However, Q. mongolica and Q. dentata increased LDR at low $({\Psi}_{leaf})$ as xeric species do. Results from principal component analysis on the 15 variables related to strategies of drought stress indicated that the 6 oak species were divided into 2 groups: (1) Q. acutissima, Q. aliena and Q. serrata as mesic habitat species and (2) Q. variabilis, Q. mongolica and Q. dentata as xeric habitat species. Among three xeric species Q. acutissima differed from the other two species in the drought strategies such as high hair density, low stornatal density, high leaf area ratio, stomatal closing at low $({\Psi}_{leaf})$ and small cell wall elasticity. The results could reasonably explain their drought strategies in natural habitat.

  • PDF

Distributional Uniqueness of Deciduous Oaks(Quercus L.) in the Korean Peninsula (한반도 하록 참나무류의 분포 특이성)

  • Kim, Yun-Ha;Kim, Jong-Won
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.20 no.2
    • /
    • pp.37-59
    • /
    • 2017
  • The Korean peninsula belongs to the temperate forest biome dominated by many deciduous oaks. We quantitatively and qualitatively studied vertical and horizontal distributions and habitat characteristics on the major oak species such as Quercus mongolica, Q. serrata, Q. variabilis, Q. dentata, Q. aliena and Q. acutissima. A total of 5,278 samples were analyzed with a species coverage and 6 principal environmental variables extracted from public database of nationwide natural environment survey. Correlation analysis was accomplished by the CANOCO using Canonical Correspondence Analysis and the Pearson correlation coefficient using PASW Statistics. The hierarchical distribution tendency of six oaks was finalized using the Goodman-Kruskal lambda coefficient of non-metric multidimensional scaling by SYN-TAX 2000. The utmost factor on the distributional segregation of oak species was the elevation, i.e. temperature. Q. serrata and Q. mongolica show clearly a diametrical distribution patterns with zonal distribution. Q. variabilis was determined as a thermophilic and xerophilous species that is a component of not only natural pseudo-climax forest but also secondary forest. The highest frequency of the dominant forest was found Q. mongolica. Whereas, Q. serrata showed the highest frequency of individual tree but the relatively lower frequency of dominant forest, which is resulted from the original habitat loss. By the benefit of the traditional Soopjeong-E, Q. acutissima dominant forests were remained rather largely. Individuals of Q. dentata occurred horizontally nationwide, but its dominant forest was the poorest. Dominant forest of Q. aliena, which is a natural vegetation, was the most rare due to a limited potential habitat.

Structural Maintenance of Chromosomes 4 is a Predictor of Survival and a Novel Therapeutic Target in Colorectal Cancer

  • Feng, Xiao-Dong;Song, Qi;Li, Chuan-Wei;Chen, Jian;Tang, Hua-Mei;Peng, Zhi-Hai;Wang, Xue-Chun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.21
    • /
    • pp.9459-9465
    • /
    • 2014
  • Background: Structural maintenance of chromosomes 4 (SMC-4) is a chromosomal ATPase which plays an important role in regulate chromosome assembly and segregation. However, the role of SMC-4 in the incidence of malignancies, especially colorectal cancer is still poorly understood. Materials and Methods: We here used quantitative PCR and Western blot analysis to examine SMC-4 mRNA and protein levels in primary colorectal cancer and paired normal colonic mucosa. SMC-4 clinicopathological significance was assessed by immunohistochemical staining in a tissue microarray (TMA) in which 118 cases of primary colorectal cancer were paired with noncancerous tissue. The biological function of SMC-4 knockdown was measured by CCK8 and plate colony formation assays. Fluorescence detection has been used to detect cell cycling and apoptosis. Results: SMC-4 expression was significantly higher in colorectal cancer and associated with T stage, N stage, AJCC stage and differentiation. Knockdown of SMC-4 expression significantly suppressed the proliferation of cancer cells and degraded its malignant degree. Conclusions: Our clinical and experimental data suggest that SMC-4 may contribute to the progression of colorectal carcinogenesis. Our study provides a new therapeutic target for colorectal cancer treatment.

Genetic Diversity of Fusarium proliferatum Populations from Maize, Onion, Rice and Sugarcane in Iran Based on Vegetative Compatibility Grouping

  • Alizadeh, Alireza;Javan-Nikkhah, Mohammad;Fotouhifar, Khalil-Berdi;Motlagh, Elahe Rabiee;Rahjoo, Vahid
    • The Plant Pathology Journal
    • /
    • v.26 no.3
    • /
    • pp.216-222
    • /
    • 2010
  • Fusarium proliferatum is the causal agent of stalk and root rot disease of maize, foot rot disease of rice, basal and root rot disease of onion and knife cut disease of sugarcane in Iran. In recent years, incidence and severity of these diseases have been increased in Iran. Fifty seven F. proliferatum single-spore isolates collected from diseased maize, rice, onion and sugarcane plants at different areas were used to study genetic diversity by determination of vegetative compatibility groups (VCGs). Chlorate-resistant nitrate non-utilizing (nit) mutants were recovered from selected isolates of F. proliferatum and used in complementation tests. All isolates in which both nit1 and NitM (or nit3) mutants were recovered, demonstrated self-compatibility. Vegetative compatibility tests by pairing nit mutants identified 30 VCGs among 57 isolates. Twenty-three isolates belonged to singlemember VCGs and the remaining 34 isolates, belonged to other seven multimember VCGs. Segregation of F. proliferatum isolates obtained from various area and host plants into different VCGs in Iran is reported for the first time. In this study, none of isolates obtained from rice complemented with any other isolates from onion and sugarcane and, non complementation occurred between onion and sugarcane isolates. Also, only one complementation occurred between one isolate of maize and one isolate of sugarcane and rice. Thus, a correlation between VCGs grouping and host preferences was founded. It is concluded that natural populations of F. proliferatum in Iran are probably genetically divergent and include isolates representing a potential risk for disease development.

Silencing of NUF2 Inhibits Tumor Growth and Induces Apoptosis in Human Hepatocellular Carcinomas

  • Liu, Qiang;Dai, She-Jiao;Li, Hong;Dong, Lei;Peng, Yu-Ping
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.20
    • /
    • pp.8623-8629
    • /
    • 2014
  • Background: As an important component of the NDC80 kinetochore complex, NUF2 is essential for kinetochore-microtubule attachment and chromosome segregation. Previous studies also suggested its involvement in development of various kinds of human cancers, however, its expression and functions in human hepatocellular carcinoma (HCC) are still unclear. Materials and Methods: In the present study, we aimed to test the hypothesis that NUF2 is aberrant in human HCCs and associated with cell growth. Results: Our results showed significantly elevated expression of NUF2 in human HCC tissues compared to adjacent normal tissues, and high expression of NUF2 in HCC cell lines. Using lentivirus-mediated silencing of NUF2 in HepG2 human HCC cells, we found that NUF2 depletion markedly suppressed proliferation and colony formation capacity in vitro, and dramatically hampered tumor growth of xenografts in vivo. Moreover, NUF2 silencing could induce cell cycle arrest and trigger cell apoptosis. Additionally, altered levels of cell cycle and apoptosis related proteins including cyclin B1, Cdc25A, Cdc2, Bad and Bax were also observed. Conclusions: In conclusion, these results demonstrate that NUF2 plays a critical role in the regulation of HCC cell proliferation and apoptosis, indicating that NUF2 may serve as a potential molecular target for therapeutic approaches.

Upregulation of STK15 in Esophageal Squamous Cell Carcinomas in a Mongolian Population

  • Chen, Guang-Lie;Hou, Gai-Ling;Sun, Fei;Jiang, Hong-Li;Xue, Jin-Feng;Li, Xiu-Shen;Xu, En-Hui;Gao, Wei-Shi;Cao, Jian-Ping
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.15
    • /
    • pp.6021-6024
    • /
    • 2014
  • Background: The STK15 gene located on chromosome 20q13.2 encodes a centrosome-associated kinase critical for regulated chromosome segregation and cytokinesis. Recent studies have demonstrated STK15 to be significantly associated with many tumors, with aberrant expression obseved in many human malignancies. The purpose of this study was to investigate expression of STK15 in esophageal squamous cell carcinomas (ESCCs) in a Mongolian population. Methods: Two non-synonymous single nucleotide polymorphisms in the coding region of STK15, rs2273535 (Phe31Ile) and rs1047972 (Val57Ile) were assessed in 380 ESCC patients and 380 healthy controls. We also detected STK15 mRNA expression in 39 esophageal squamous cell carcinomas and corresponding adjacent tissues by real time PCR. Results: rs2273535 showed a significant association with ESCC in our Mongolian population (rs227353, P allele = 0.0447, OR (95%CI) = 1.259 (1.005~1.578)). Real time PCR analysis of ESCC tissues showed that expression of STK15 mRNA in cancer tissues was higher than in normal tissues (p = 0.013). Conclusions: Our study showed that functional SNPs in the STK15 gene are associated with ESCC in a Mongolian population and up-regulation of STK15 mRNAoccurs in ESCC tumors compared adjacent normal tissues. STK15 may thus have an important role in the prognosis of ESCC and be a potential therapeutic target.