• Title/Summary/Keyword: segmentation of a signal

Search Result 135, Processing Time 0.023 seconds

Real-time Pulse Radar Signal Processing Algorithm for Vehicle Detection (실시간 차량 검지를 위한 펄스 레이더 신호처리 알고리즘)

  • Ryu Suk-Kyung;Woo Kwang-Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.4
    • /
    • pp.353-357
    • /
    • 2006
  • The vehicle detection method using pulse radar has the advantage of maintenance in comparison with loop detection method. We propose the pulse radar signal processing algorithm in which we devide the trace. data from pulse radar into segments by using SSC concept, and then construct the sectors in accordance with period and amplitude of segments, and finally decide the vehicle detection probability by applying the SSC parameters of each sectors into the discriminant function. We also improve the signal processing time by reducing the quantities of processing data and processing routines.

A Study on Recognition Units and Methods to Align Training Data for Korean Speech Recognition) (한국어 인식을 위한 인식 단위와 학습 데이터 분류 방법에 대한 연구)

  • 황영수
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.2
    • /
    • pp.40-45
    • /
    • 2003
  • This is the study on recognition units and segmentation of phonemes. In the case of making large vocabulary speech recognition system, it is better to use the segment than the syllable or the word as the recognition unit. In this paper, we study on the proper recognition units and segmentation of phonemes for Korean speech recognition. For experiments, we use the speech toolkit of OGI in U.S.A. The result shows that the recognition rate of the case in which the diphthong is established as a single unit is superior to that of the case in which the diphthong is established as two units, i.e. a glide plus a vowel. And recognizer using manually-aligned training data is a little superior to that using automatically-aligned training data. Also, the recognition rate of the case in which the bipbone is used as the recognition unit is better than that of the case in which the mono-Phoneme is used.

  • PDF

RSSI-based Location Determination via Segmentation-based Linear Spline Interpolation Method (분할기반의 선형 호 보간법에 의한 RSSI기반의 위치 인식)

  • Lau, Erin-Ee-Lin;Chung, Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.473-476
    • /
    • 2007
  • Location determination of mobile user via RSSI approach has received ample attention from researchers lately. However, it remains a challenging issue due to the complexities of RSSI signal propagation characteristics, which are easily exacerbated by the mobility of user. Hence, a segmentation-based linear spline interpolation method is proposed to cater for the dynamic fluctuation pattern of radio signal in complex environment. This optimization algorithm is proposed in addition to the current radiolocation's (CC2431, Chipcon, Norway) algorithm, which runs on IEEE802.15.4 standard. The enhancement algorithm involves four phases. First phase consists of calibration model in which RSSI values at different static locations are collected and processed to obtain the mean and standard deviation value for the predefined distance. RSSI smoothing algorithm is proposed to minimize the dynamic fluctuation of radio signal received from each reference node when the user is moving. Distances are computed using the segmentation formula obtain in the first phase. In situation where RSSI value falls in more than one segment, the ambiguity of distance is solved by probability approach. The distance probability distribution function(pdf) for each distances are computed and distance with the highest pdf at a particular RSSI is the estimated distance. Finally, with the distances obtained from each reference node, an iterative trilateration algorithm is used for position estimation. Experiment results obtained position the proposed algorithm as a viable alternative for location tracking.

  • PDF

Enhanced segmentation method of a fingerprint image using run-length connectivity (Run-Length Connectivity를 이용한 지문영상의 영역분리 방법의 개선)

  • Park Jung-Ho;Song Jong-Kwan;Yoon Byung-Woo;Lee Myeong-Jin
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.4
    • /
    • pp.249-255
    • /
    • 2004
  • In fingerprint verification and identification, fingerprint and background region should be segmented. For this purpose, most systems obtain variance of brightness of X and Y direction using Sobel mask. To decide given local region is background or not, the variance is compared with a certain threshold. Although this method is simple, most fingerprint image does not separated with two region of fingerprint and background region. In this paper, we presented a new segmentation algorithm based on Run-Length Connectivity analysis. For a given binary image after thresholding, suggested algorithm calculates RL of X and Y direction. Until the given image is segmented to two regions, small run region is successively inverted. Experimental result show that this algorithm effectively separates fingerprint region and background region.

  • PDF

A study on the positioning of fine scintillation pixels in a positron emission tomography detector through deep learning of simulation data

  • Byungdu Jo;Seung-Jae Lee
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1733-1737
    • /
    • 2024
  • In order to specify the location of the scintillation pixel that interacted with gamma rays in the positron emission tomography (PET) detector, conventionally, after acquiring a flood image, the location of interaction between the scintillation pixel and gamma ray could be specified through a pixel-segmentation process. In this study, the experimentally acquired signal was specified as the location of the scintillation pixel directly, without any conversion process, through the simulation data and the deep learning algorithm. To evaluate the accuracy of the specification of the scintillation pixel location through deep learning, a comparative analysis with experimental data through pixel segmentation was performed. In the same way as in the experiment, a detector was configured on the simulation, a model was built using the acquired data through deep learning, and the location was specified by applying the experimental data to the built model. Accuracy was calculated through comparative analysis between the specified location and the location obtained through the segmentation process. As a result, it showed excellent accuracy of about 85 %. When this method is applied to a PET detector, the position of the scintillation pixel of the detector can be specified simply and conveniently, without additional work.

A Hippocampus Segmentation in Brain MR Images using Level-Set Method (레벨 셋 방법을 이용한 뇌 MR 영상에서 해마영역 분할)

  • Lee, Young-Seung;Choi, Heung-Kook
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.9
    • /
    • pp.1075-1085
    • /
    • 2012
  • In clinical research using medical images, the image segmentation is one of the most important processes. Especially, the hippocampal atrophy is helpful for the clinical Alzheimer diagnosis as a specific marker of the progress of Alzheimer. In order to measure hippocampus volume exactly, segmentation of the hippocampus is essential. However, the hippocampus has some features like relatively low contrast, low signal-to-noise ratio, discreted boundary in MRI images, and these features make it difficult to segment hippocampus. To solve this problem, firstly, We selected region of interest from an experiment image, subtracted a original image from the negative image of the original image, enhanced contrast, and applied anisotropic diffusion filtering and gaussian filtering as preprocessing. Finally, We performed an image segmentation using two level set methods. Through a variety of approaches for the validation of proposed hippocampus segmentation method, We confirmed that our proposed method improved the rate and accuracy of the segmentation. Consequently, the proposed method is suitable for segmentation of the area which has similar features with the hippocampus. We believe that our method has great potential if successfully combined with other research findings.

Segmented Video Coding Using Variable Block-Size Segmentation by Motion Vectors (움직임벡터에 의한 가변블럭영역화를 이용한 영역기반 동영상 부호화)

  • 이기헌;김준식;박래홍;이상욱;최종수
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.4
    • /
    • pp.62-76
    • /
    • 1994
  • In this paper, a segmentation-based coding technique as applied to video sequences is proposed. A proposed method separates an image into contour and texture parts, then the visually-sensitive contour part is represented by chain codes and the visually-insensitive texture part is reconstructed by a representative motion vector of a region and mean of the segmented frame difference. It uses a change detector to find moving areas and adopts variable blocks to represent different motions correctly. For better quality of reconstructed images, the displaced frame difference between the original image and the motion compensated image reconstructed by the representative motion vector is segmented. Computer simulation with several video sequences shows that the proposed method gives better performance than the conventional ones in terms of the peak signal to noise ratio(PSNR) and compression ration.

  • PDF

Feature Points Selection Using Block-Based Watershed Segmentation and Polygon Approximation (블록기반 워터쉐드 영역분할과 다각형 근사화를 이용한 특징점 추출)

  • 김영덕;백중환
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.12a
    • /
    • pp.93-96
    • /
    • 2000
  • In this paper, we suggest a feature points selection method using block-based watershed segmentation and polygon approximation for preprocessing of MPEG-4 mesh generation. 2D natural image is segmented by 8$\times$8 or 4$\times$4 block classification method and watershed algorithm. As this result, pixels on the watershed lines represent scene's interior feature and this lines are shapes of closed contour. Continuous pixels on the watershed lines are selected out feature points using Polygon approximation and post processing.

  • PDF

A Segmentation Algorithm of the Connected Word Speech by Statistical Method (統計的인 方法에 依한 連結音의 音素分割 알고리듬)

  • Cho, Jeong-Ho;Hong, Jae-Keun;Kim, Soo-Joong
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.4
    • /
    • pp.151-163
    • /
    • 1989
  • A statistical approach for the segmentation of speed signals is described in this paper. The main idea of this algorithm is the use of three AR models. Two fixed models are identified at the stationary parts of the signal before and after the spectral change. Changes are detected when the distance between these two models is high. Another model is located between two fixed models and is used to estimate spectral change time. This segmentation algorithm has been tested with connected words and compared to classical methods. The results showed that it can provide more accurate locations of boundaries of segments and can reduce the amount of oversegmentation.

  • PDF

Time-Scale Modification of Polyphonic Audio Signals Using Sinusoidal Modeling (정현파 모델링을 이용한 폴리포닉 오디오 신호의 시간축 변화)

  • 장호근;박주성
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.77-85
    • /
    • 2001
  • This paper proposes a method of time-scale modification of polyphonic audio signals based on a sinusoidal model. The signals are modeled with sinusoidal component and noise component. A multiresolution filter bank is designed which splits the input signal into six octave-spaced subbands without aliasing and sinusoidal modeling is applied to each subband signal. To alleviate smearing of transients in time-scale modification a dynamic segmentation method is applied to subbands which determines the analysis-synthesis frame size adaptively to fit time-frequency characteristics of the subband signal. For extracting sinusoidal components and calculating their parameters matching pursuit algorithm is applied to each analysis frame of subband signal. In accordance with spectrum analysis a psychoacoustic model implementing the effect of frequency masking is incorporated with matching pursuit to provide a resonable stop condition of iteration and reduce the number of sinusoids. The noise component obtained by subtracting the synthesized signal with sinusoidal components from the original signal is modeled by line-segment model of short time spectrum envelope. For various polyphonic audio signals the result of simulation shows suggested sinusoidal modeling can synthesize original signal without loss of perceptual quality and do more robust and high quality time-scale modification for large scale factor because of representing transients without any perceptual loss.

  • PDF