• Title/Summary/Keyword: segmentation method

Search Result 2,159, Processing Time 0.034 seconds

A Level Set Method to Image Segmentation Based on Local Direction Gradient

  • Peng, Yanjun;Ma, Yingran
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.4
    • /
    • pp.1760-1778
    • /
    • 2018
  • For image segmentation with intensity inhomogeneity, many region-based level set methods have been proposed. Some of them however can't get the relatively ideal segmentation results under the severe intensity inhomogeneity and weak edges, and without use of the image gradient information. To improve that, we propose a new level set method combined with local direction gradient in this paper. Firstly, based on two assumptions on intensity inhomogeneity to images, the relationships between segmentation objects and image gradients to local minimum and maximum around a pixel are presented, from which a new pixel classification method based on weight of Euclidian distance is introduced. Secondly, to implement the model, variational level set method combined with image spatial neighborhood information is used, which enhances the anti-noise capacity of the proposed gradient information based model. Thirdly, a new diffusion process with an edge indicator function is incorporated into the level set function to classify the pixels in homogeneous regions of the same segmentation object, and also to make the proposed method more insensitive to initial contours and stable numerical implementation. To verify our proposed method, different testing images including synthetic images, magnetic resonance imaging (MRI) and real-world images are introduced. The image segmentation results demonstrate that our method can deal with the relatively severe intensity inhomogeneity and obtain the comparatively ideal segmentation results efficiently.

Small Object Segmentation Based on Visual Saliency in Natural Images

  • Manh, Huynh Trung;Lee, Gueesang
    • Journal of Information Processing Systems
    • /
    • v.9 no.4
    • /
    • pp.592-601
    • /
    • 2013
  • Object segmentation is a challenging task in image processing and computer vision. In this paper, we present a visual attention based segmentation method to segment small sized interesting objects in natural images. Different from the traditional methods, we first search the region of interest by using our novel saliency-based method, which is mainly based on band-pass filtering, to obtain the appropriate frequency. Secondly, we applied the Gaussian Mixture Model (GMM) to locate the object region. By incorporating the visual attention analysis into object segmentation, our proposed approach is able to narrow the search region for object segmentation, so that the accuracy is increased and the computational complexity is reduced. The experimental results indicate that our proposed approach is efficient for object segmentation in natural images, especially for small objects. Our proposed method significantly outperforms traditional GMM based segmentation.

A Method for Tree Image Segmentation Combined Adaptive Mean Shifting with Image Abstraction

  • Yang, Ting-ting;Zhou, Su-yin;Xu, Ai-jun;Yin, Jian-xin
    • Journal of Information Processing Systems
    • /
    • v.16 no.6
    • /
    • pp.1424-1436
    • /
    • 2020
  • Although huge progress has been made in current image segmentation work, there are still no efficient segmentation strategies for tree image which is taken from natural environment and contains complex background. To improve those problems, we propose a method for tree image segmentation combining adaptive mean shifting with image abstraction. Our approach perform better than others because it focuses mainly on the background of image and characteristics of the tree itself. First, we abstract the original tree image using bilateral filtering and image pyramid from multiple perspectives, which can reduce the influence of the background and tree canopy gaps on clustering. Spatial location and gray scale features are obtained by step detection and the insertion rule method, respectively. Bandwidths calculated by spatial location and gray scale features are then used to determine the size of the Gaussian kernel function and in the mean shift clustering. Furthermore, the flood fill method is employed to fill the results of clustering and highlight the region of interest. To prove the effectiveness of tree image abstractions on image clustering, we compared different abstraction levels and achieved the optimal clustering results. For our algorithm, the average segmentation accuracy (SA), over-segmentation rate (OR), and under-segmentation rate (UR) of the crown are 91.21%, 3.54%, and 9.85%, respectively. The average values of the trunk are 92.78%, 8.16%, and 7.93%, respectively. Comparing the results of our method experimentally with other popular tree image segmentation methods, our segmentation method get rid of human interaction and shows higher SA. Meanwhile, this work shows a promising application prospect on visual reconstruction and factors measurement of tree.

Segmentation of Neuronal Axons in Brainbow Images

  • Kim, Tae-Yun;Kang, Mi-Sun;Kim, Myoung-Hee;Choi, Heung-Kook
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.12
    • /
    • pp.1417-1429
    • /
    • 2012
  • In neuroscientific research, image segmentation is one of the most important processes. The morphology of axons plays an important role for researchers seeking to understand axonal functions and connectivity. In this study, we evaluated the level set segmentation method for neuronal axons in a Brainbow confocal microscopy image. We first obtained a reconstructed image on an x-z plane. Then, for preprocessing, we also applied two methods: anisotropic diffusion filtering and bilateral filtering. Finally, we performed image segmentation using the level set method with three different approaches. The accuracy of segmentation for each case was evaluated in diverse ways. In our experiment, the combination of bilateral filtering with the level set method provided the best result. Consequently, we confirmed reasonable results with our approach; we believe that our method has great potential if successfully combined with other research findings.

Performance Comparison Between the Envelope Peak Detection Method and the HMM Based Method for Heart Sound Segmentation

  • Jang, Hyun-Baek;Chung, Young-Joo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.2E
    • /
    • pp.72-78
    • /
    • 2009
  • Heart sound segmentation into its components, S1, systole, S2 and diastole is the first step of analysis and the most important part in the automatic diagnosis of heart sounds. Conventionally, the Shannon energy envelope peak detection method has been popularly used due to its superior performance in locating S1 and S2. Recently, the HMM has been shown to be quite suitable in modeling the heart sound signal and its use in segmenting the heart sound signal has been suggested with some success. In this paper, we compared the two methods for heart sound segmentation using a common database. Experimental tests carried out on the 4 different types of heart sound signals showed that the segmentation accuracy relative to the manual segmentation was 97.4% in the HMM based method which was larger than 91.5% in the peak detection method.

A Study on Vehicle Target Classification Method Using Both Shape and Local Features with Segmentation Reliability (표적분할 신뢰도 값 기반의 형태특징과 지역특징을 이용한 차량표적 분류기법 연구)

  • Yang, DongWon;Lee, Yonghun;Kwak, Dongmin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.40-47
    • /
    • 2017
  • To classify the vehicle targets automatically using thermal images, there are usually two main categories of feature extraction method, local and shape feature extraction methods. Since thermal images have less texture information than color images, the shape feature extraction method is useful when the segmentation results are correct. However, if there are some errors in target segmentation, the shape feature may contain some errors, then the classification accuracy can be decreased. To overcome these problems, in this paper, we propose the segmentation reliability estimation method for target classification. The segmentation reliability can be estimated by using the difference information of average intensities and edge energies between the target and the background area. The estimated segmentation reliability is applied in the decision level fusion method of classification results using both shape and local features. Experiment results using the thermal images of the vehicle targets (main battle tank, armored personnel carrier, military truck, and an estate car) show that the proposed classification method and the segmentation reliability estimation method have a good performance in classification accuracy.

Inversion of Spread-Direction and Alternate Neighborhood System for Cellular Automata-Based Image Segmentation Framework

  • Lee, Kyungjae;Lee, Junhyeop;Hwang, Sangwon;Lee, Sangyoun
    • Journal of International Society for Simulation Surgery
    • /
    • v.4 no.1
    • /
    • pp.21-23
    • /
    • 2017
  • Purpose In this paper, we proposed alternate neighborhood system and reverse spread-direction approach for accurate and fast cellular automata-based image segmentation method. Materials and Methods On the basis of a simple but effective interactive image segmentation technique based on a cellular automaton, we propose an efficient algorithm by using Moore and designed neighborhood system alternately and reversing the direction of the reference pixels for spreading out to the surrounding pixels. Results In our experiments, the GrabCut database were used for evaluation. According to our experimental results, the proposed method allows cellular automata-based image segmentation method to faster while maintaining the segmentation quality. Conclusion Our results proved that proposed method improved accuracy and reduced computation time, and also could be applied to a large range of applications.

Image Segmentation using Multi-scale Normalized Cut (다중스케일 노멀라이즈 컷을 이용한 영상분할)

  • Lee, Jae-Hyun;Lee, Ji Eun;Park, Rae-Hong
    • Journal of Broadcast Engineering
    • /
    • v.18 no.4
    • /
    • pp.609-618
    • /
    • 2013
  • This paper proposes a fast image segmentation method that gives high segmentation performance as graph-cut based methods. Graph-cut based image segmentation methods show high segmentation performance, however, the computational complexity is high to solve a computationally-intensive eigen-system. This is because solving eigen-system depends on the size of square matrix obtained from similarities between all pairs of pixels in the input image. Therefore, the proposed method uses the small-size square matrix, which is obtained from all the similarities among regions obtained by segmenting locally an image into several regions by graph-based method. Experimental results show that the proposed multi-scale image segmentation method using the algebraic multi-grid shows higher performance than existing methods.

Structural analysis of trabecular bone using Automatic Segmentation in micro-CT images (마이크로 CT 영상에서 자동 분할을 이용한 해면뼈의 형태학적 분석)

  • Kang, Sun-Kyung;Jung, Sung-Tae
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.3
    • /
    • pp.342-352
    • /
    • 2014
  • This paper proposes an automatic segmentation method of cortical bone and trabecular bone and describes an implementation of structural analysis method of trabecular bone in micro-CT images. The proposed segmentation method extract bone region with binarization using a threshold value. Next, it finds adjacent contour lines from outer boundary line into inward direction and sets candidate regions of cortical bone. Next it remove cortical bone region by finding the candidate cortical region of which the average pixel value is maximum. We implemented the method which computes four structural indicators BV/TV, Tb.Th, Tb.Sp, Tb.N by using VTK(Visualization ToolKit) and sphere fitting algorithm. We applied the implemented method to twenty proximal femur of mouses and compared with the manual segmentation method. Experimental result shows that the average error rates between the proposed segmentation method and the manual segmentation method are less than 3% for the four structural indicatiors. This result means that the proposed method can be used instead of the combersome and time consuming manual segmentation method.