• Title/Summary/Keyword: seepage failure

Search Result 94, Processing Time 0.02 seconds

A Study on the Estimation of Stability of Fill Dam by Long-term Electrical Resistivity Monitoring (장주기 전기비저항 모니터링 기법을 이용한 필댐의 안정성 평가)

  • Kim, Gi-Ho;Lim, Heui-Dae;Ahn, Hee-Yoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.5
    • /
    • pp.53-64
    • /
    • 2013
  • Resistivity monitoring is based on the fact that a change in the porosity leads to the changes in water content and fine particles, which alter the electrical resistivity. At every embankment dam, internal erosion always occurs as time passes. The internal erosion generally develops into piping over a long time by backward erosion and concentrated leak, and finally leads to dam failure. Resistivity is known to be very sensitive to the changes in porosity in embankment dams. Thus resistivity monitoring is a reasonable method to find out the leakage zone. However, resistivity is strongly influenced by seasonal variation of temperature, TDS of reservoir water and water level. In this paper. we first installed electrodes permanently at the center of the crest. The electrical resistivity monitoring data was acquired every 6 hours from Apr. 3, 2011 to July. 31, 2012. To analyze the characteristics of monitoring data, each resistivity data was calculated from up to 2,950 data sets. The result indicated a seasonal resistivity variation due to related temperature. Finally, a quantitative method to estimate porosities of the embankment dam from the resistivity monitoring data was analyzed. The applicability and reliability were verified and the importance of electrical resistivity monitoring for obtaining reliable result was emphasized.

Real-time Reservoir Dam Status Evaluation System Using Wireless Sensor Network System (무선 센서 네트워크 시스템을 이용한 실시간 저수지 댐의 상태평가 시스템)

  • Yoo, Chanho;Kim, Seungwook;Hwang, Jungsoon;Na, Gihyuk;You, Kwangho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.12
    • /
    • pp.41-46
    • /
    • 2018
  • The wireless sensor network system has the advantage of confirming the behavior of the entire facility by improving the disadvantages of conventional monitoring system. As a result, it is widely proposed as safety diagnosis and measurement of structures, water management systems, and management systems for dam structures. However, there is a lack of research that can evaluate the condition of facilities such as safety at the same time as monitoring. In this study, it is proposed a wireless sensor network system which can evaluate the behavior characteristics of facilities and evaluate the safety status for improving the technical disadvantages on conventional monitoring system. The geotechnical risk factors for the reservoir dam facility were evaluated and the limit values for the risk factors causing the failure of the facility were set. In other words, the system was set up so that the risk factors can be measured and the limit status can be evaluated immediately for each factor. In this study, numerical analysis is carried out for seepage and slope stability analysis using the typical cross section for reservoir dams. The stress-porewater coupling finite difference numerical analysis is performed for establishing the limit displacement for reservoir dam structures. It is developed a system that can estimate the time to reach the critical value by regression analysis using the measured datas.

River Embankment Stability against Hydraulic Piping Failure in Korea (우리나라 하천제방에 대한 내부침식 파괴 연구 : 사례연구)

  • Kwon, Kyo-Keun;Han, Sang-Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1C
    • /
    • pp.33-42
    • /
    • 2006
  • Lots of river embankments or levees in Korea are quite so old and unknown the origin even. The river deposits, moreover, obtainable easily somewhere were used for materials of embankment without any technical considerations such as the influence soil properties and construction methods on embankment stability. It's natural that safety would be threatened if the water level rises due to flood or rainfall when it comes to abnormal weather conditions, especially. From this point of view, enlargement of embankment, irrigation works, etc. are in progress recently at the situation from a reinforcement work. However, taking influence of soil properties and construction methods on embankment stability into account against cracking or piping is still insufficient. Fragmentary design criteria or irrational construction methods are applied rather as the case may be. In this study, therefore, a way to estimate piping and cracking resistance (Sherard, 1953) has been introduced and reevaluated for practical use with an eye to material properties and its applicability to piping-experienced embankments was examined. Piping possibility was also examined in the present design criteria and compared. In view of the results achieved, it reflects that both yield piping possibility. But it's still necessary to complement how to judge and verify piping resistance of given soils with gradation curves by the representative curve, quantitatively and that piping resistance should consider compaction effects as well.

A Study on the Effect of Applying Water Seepage Lowering Method Using Swelling Waterstop for Expansion Joint in the Concrete Dam (콘크리트 댐에서 수축이음부의 수팽창성 차수재를 이용한 침투저감 공법 적용효과 연구)

  • Han, Kiseung;Lee, Seungho;Kim, Sanghoon;Kim, Sejin;Pai, Sungjin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.10
    • /
    • pp.21-29
    • /
    • 2021
  • Most concrete gravity-type dams in and out of the country were constructed by column method to control cracks caused by concrete hydration heat generated during construction, resulting in a certain level of leakage after impoundment through various causes, such as contraction joints and construction joints. However, due to the characteristics of concrete structures that shrink and expand according to temperature, concrete dams have vertical joints and drains to allow penetration. PVC waterproof shows excellent effects in completion of the dam, which however increases the possibility of interfacial failure due to different thermal expansion. Other causes of penetration may include problems with quality control during installation, generation of cracks due to heat of hydration of concrete, waterproofing methods, etc. In the case of Bohyunsan Dam in Yeongcheon, North Gyeongsang Province, the amount of drainage in the gallery was checked and underwater, and it was confirmed that there are many penetrations from drainage holes connected to vertical joints, and that some of the PVC waterproofs are not fully operated. As a new method to prevent penetration through vertical joints, D.S.I.M. (Dam Sealing Innovation Method) developed by World E&C was applied to Bohyunsan Dam and checked the amount of drainage in the gallery. As a result of first testing three most leaking vertical joints, the drain in the gallery was reduced by 87% on the average and then applied to the remaining 13 locations, which showed a 83% reduction effect based on the total drain in the gallery. Summing up these results, it was found that D.S.I.M. preventing water leakage from the upstream face is a valid construction method to reduce the water see-through and penetration quantity seen in downstream faces of concrete dams. If D.S.I.M. is applied to other concrete dams at domestic and abroad, it is expected that it will be very effective to prevent water leakage through vertical joints that are visible from downstream faces.