• Title/Summary/Keyword: seedling survival rate

Search Result 135, Processing Time 0.026 seconds

Factors Affecting the Early Natural Regeneration of Pinus densiflora S. et Z. after Forest Works at Mt. Joongwang Located in Pyungchang-gun, Kangwon-do (강원도(江原道) 평창군(平昌郡) 중왕산(中旺山)에서 산림작업(山林作業) 후(後) 소나무의 초기(初期) 천연(天然) 갱신(更新)에 미치는 요인(要因))

  • Park, Pil Sun;Lee, Don Koo
    • Journal of Korean Society of Forest Science
    • /
    • v.85 no.3
    • /
    • pp.524-531
    • /
    • 1996
  • The objective of this study was to determine the important factors affecting the early natural regeneration of Pinus densiflora S. et Z. Seed germination, survival and height growth of the pine seedlings were examined at four experimental plots of P. densiflora forests including forest roadside. Plots I and III were thinned in 1992, plot II was treated with hexazinone in 1993 after seed tree method was applied in 1982 and 1989. Seedlings emerged after thinning and the rate of their emergence depended on forest floor conditions. Seedling survival was related with light conditions, herbaceous vegetation, and degrees of rainfall. More seedlings emerged in forest hauling roads than within the forest because soil scarification due to logging provided better conditions for seed germination and seedling growth. Seed supply was enough, but germination rate was very low in the forest compared with that in the greenhouse because micro-environments such as organic layer and herbaceous plant acted as limiting factors. Weed control was needed for 4 to 5 years until seedlings grew upto about 50cm in height which was similar to that of herbaceous plants. But 10-40% coverage of herbaceous vegetation was needed to protect small seedlings from heavy rain. Forest works such as thinning and logging, over 40% of light were important factors to help the pine regeneration. However, over 70% coverage of herbaceous vegetation, and heavy rain inhibited rather survival and growth of pine seedlings.

  • PDF

Evaluating the Effect of Jellyfish Chips on the Survival and Growth of Pinus thunbergii Seedlings Planted in a Coastal Area of Ehime Prefecture, Japan

  • Kim, Suk-Woo;Ezaki, Tsugio;Lee, Youn-Tae;Teramoto, Yukiyoshi;Chun, Kun-Woo
    • Journal of Forest and Environmental Science
    • /
    • v.34 no.2
    • /
    • pp.196-198
    • /
    • 2018
  • This study aimed to evaluate the effectiveness of jellyfish chips in promoting the survival and growth of Pinus thunbergii seedlings in a coastal area based on a five-year field investigation from 2012 to 2016. Seedling survival rate was significantly higher in the treatment (96%) than in the control (75%) group in 2012. Furthermore, the height of five-year-old seedlings after plantation in 2012 was significantly greater in the treatment (3.41 m) than in the control (2.32 m) group (t=10.151; p-value<0.01). These results revealed that jellyfish chips can improve soil condition by enhancing moisture retention during the early growth stages and supplying nutrients to the seedlings over time. Our findings indicated that jellyfish chips could be used effectively as an organic fertilizer for growing coastal disaster prevention forests.

Effects of Shading Treatments on Growth of Abies koreana Seedlings in High-Temperature and High Light Environments (차광막 처리가 고온 및 고광도 환경에서 구상나무(Abies koreana) 묘목의 생육에 미치는 영향 )

  • Jae-Hyun Park;Hyo-In Lim;Han-Na Seo;Yong-Han Yoon
    • Journal of Environmental Science International
    • /
    • v.32 no.11
    • /
    • pp.811-820
    • /
    • 2023
  • This study investigated the protective effects of shade nets on Abies koreana seedlings subjected to high temperature and luminosity stress, which are pertinent for plant survival in climate change scenarios. This study, conducted at Konkuk University, compared the growth, survival, and soil conditions of 3-year-old specimens across natural, greenhouse, and shaded settingsfrom July to September 2022. Our findings demonstrated that shade nets significantly enhanced seedling survival by moderating soil temperature and moisture. This is particularly evident in high-temperature conditions, where shade nets mitigate stress on seedlings and safeguard them from excessive sunlight exposure. Proper net installation height and location are crucial for optimal temperature and humidity control, suggesting broader applicability for various species and offering strategies to combat the ecological impacts of climate change.

Nursery Growing Media Practice: Impact on Seed Germination and Initial Seedling Development of Hymenodictyon orixensis (Roxb.) Mabberley - A Vulnerable Native Tree Species

  • Islam, Azharul;Hao, Hong;Hossain, Mohammed Kamal;Rahman, Mahmudur
    • Journal of Forest and Environmental Science
    • /
    • v.38 no.1
    • /
    • pp.38-47
    • /
    • 2022
  • Hymenodictyon orixensis (Roxb.) Mabberley (locally known as Bhutum in Bangladesh) is both an ecologically and economically valuable multipurpose tree species for afforestation and reforestation programs in Bangladesh. Seed germination and seedling development study of H. orixense were conducted to find out the response to different growing medium, e.g., polybag (15×10 cm (T0) and 20×15 cm (T1)), sand medium in propagator house (T2), conventional nursery bed (T3), and root trainer (T4) in the Nursery. Consequently, germination behavior and seedling morphological parameters of H. orixense were assessed. The results revealed that the sand medium of the propagator house (T2) provided the highest germination % (58.57±22.30) and the highest germination energy (11.43±2.43) followed by seedlings growing in 20×15 cm polybags (T1) containing forest topsoil and cow-dung at a ratio of 3:1. Except for germination energy, germination values, and germination capacity, other seed biology parameters, particularly imbibition, germination period, germination rate, and plant survival percent in T1, T2, T3, and T4 were significantly (p<0.05) different from T0. Each phenotypic parameter of seedlings and dry matter of shoot and root significantly differed from control except root length (p<0.992). Based on this study, Polybags of 20×15 cm size are regarded as the best medium for quality seedling development of H. orixense. The nursery bed (T3) had the lowest germination performance and developed more inferior quality seedlings. Thereby, 20×15 cm size of polybags with conventional soil and cow-dung media is recommended for maximum germination and to grow the quality seedlings of H. orixense in the Nursery.

The Effect of Dredged Soil Improvement on Soil Chemical Conditions and Plant Growth at the Slope of Saemangeum Sea Dike

  • Park, Chanwoo;Koo, Namin;Kwon, Jino;Lim, Joo-Hoon;Jeong, Yong-Ho;Kim, Jung-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.1
    • /
    • pp.16-22
    • /
    • 2014
  • This study was conducted to determine the changes in soil chemical properties and the growth of seedling according to the different dredged soil improving methods at slope of Saemangeum sea dike. Undersea dredged soil was improved by five different methods. Seedlings of Ulmus davidiana var. japonica, Chionanthus retusa, Celtis sinensis, and Pinus thunbergii were planted after 9 month of experience site installation, then soil pH, NaCl concentration in soil, soil organic matter (SOM), and survival rate and height of seedling was measured. Initial soil pH was highest in the control plot but it decreased to the similar level with other soil improving plots after 35 months. There were no differences in NaCl concentration between the control and soil improving plots, and it showed decreasing tendency during the study period. In the control plot, initial SOM was lowest among that of other plots during the study period. The survival rate of 36 months after planting of P. thunbergii was highest among the species. The gap of the tree growth of P. thunbergii between the control plot and the soil improving plots was small, however, other species showed relatively higher tree height in the soil improving plots than the control plots. Creation forest with P. thunbergii might be a cost effective afforestation in coastal reclaimed land since it rarely needs additional improvement of dredged soil.

Quality of Yellow Poplar (Liriodendron tulipifera) Seedlings by the Method of Seedling Production (백합나무 양묘방법에 따른 묘목품질 비교)

  • Ryu, Keun-Ok;Song, Jeong-Ho;Choi, Hyung-Soon;Kwon, Hae-Yun;Kwon, Yong-Rak
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.3
    • /
    • pp.307-316
    • /
    • 2007
  • Yellow poplar (Liriodendron tulipifera L.) has low germination rate relatively other species, so the seedling production of Yellow poplar is a hard task. Accordingly this study was conducted to determine the optimal germination conditions for healthy seedling production and to promote survival rate after afforestation. Gemination percentage was examined at different media and seed covering materials using planting flats in the greenhouse. The best germination percentage was observed in sand for media and compound soil for covering materials. But it was time to transplant, seedlings became a poor character (i.e. height, root length, number of root, dry weight) in sand for media. In order to produce healthy seedlings, each different medium was compounded with TKS-2 (this is a gardening bed soil.) in the ratio 1:1 (v/v.), and compared two conditions. Quality of seedling was better than not mixed TKS-2 into each medium. Transplanting seedlings from greenhouse to nursery grew up rapidly 2 months later (early in August~early in October). Growth amount during two months corresponded to 85.6% and 71.3% in total growth amount of height and diameter at root collar, respectively. In the case of the competition-density effect on yellow-poplar seedlings, direct seedling produced the maximum 35 standard seedlings above 8 mm of root collar diameter per $m^2$, while transplanting seedling produced the maximum 64 standard seedlings per $m^2$. And produced seedlings of two way were significantly different rootlet while axial root and lateral root was not significantly different.

Early Growth Performance of Zelkova serrata Trees According to Seedling Age and Planting Density (묘령 및 식재밀도에 따른 느티나무 조림목의 초기 생육 특성)

  • Noh, Nam Jin;Cho, Min Seok
    • Journal of Korean Society of Forest Science
    • /
    • v.109 no.4
    • /
    • pp.390-399
    • /
    • 2020
  • We investigated the effect of seedling age and planting density on early growth performance of Zelkova serrata trees. Containerized Z. serrata seedlings, 1-year-old and 2-year-old, were planted according to two different planting densities (3,000 and 5,000 trees ha-1) at the end of March, 2017. Three plots were established for each treatment (2 seedling ages × 2 planting densities). We calculated the survival rate (%) of out-planted seedlings as well as the stem volume based on the root collar diameter (RCD) and height (H) in September of each year, from 2017 to 2019. Seedling age and planting density did not affect survival rate of the out-planted trees. Planting density did not affect height of the trees, whereas the treatment significantly affected RCD and the H/D ratio for 2-year-old seedlings in 2019. The stem volume per tree was highest in the plot of 2-year-old seedlings at 5,000 trees ha-1 and lowest in the 1-year-old seedlings at 3,000 trees ha-1. In addition, the tree height in both 1-year-old and 2-year-old Z. serrata trees was greater in the 5,000 trees ha-1 plot than in the 3,000 trees ha-1 plot. There was no interactive effect between seedling age and planting density on stem volume; however, as seedling age and planting density increased, stem volume of Z. serrata trees increased. The values for stem volume per hectare are 85%, 68%, and 300% higher in 1-year-old 5,000 trees ha-1, 2-year-old 3,000 trees ha-1, and 2-year-old 5,000 trees ha-1 plots, respectively, compared to the values in 1-year-old 3,000 trees ha-1. This result shows that high planting density (close planting) affects tree growth differently based on seedling age, and suggests that the planting density of 5,000 trees ha-1 is suitable for 2-year-old seedlings to improve early growth field performance.

Effect of Experimental Warming on Physiological and Growth Responses of Larix kaempferi Seedlings (실외 온난화 처리에 따른 낙엽송 묘목의 생리 및 생장 반응)

  • An, Jiae;Chang, Hanna;Park, Min Ji;Han, Seung Hyun;Hwang, Jaehong;Cho, Min Seok;Son, Yowhan
    • Journal of Climate Change Research
    • /
    • v.7 no.1
    • /
    • pp.77-84
    • /
    • 2016
  • Seedling stage is particularly important for tree survival and is easily influenced by warming. Therefore, air temperature being increased due to climate change may affect physiological traits and growth of seedlings. This study was conducted to investigate the physiological and growth responses of Larix kaempferi seedlings to open-field experimental warming. 1-year-old and 2-year-old L. kaempferi seedlings were warmed with infrared lamps since April 2015 and April 2014, respectively. The seedlings in the warmed plots were warmed to maintain the air temperature to be $3^{\circ}C$ higher than that of the control plots. Physiological responses (stomatal conductance, transpiration rate, net photosynthetic rate and total chlorophyll content) and growth responses (root collar diameter (RCD), height and biomass) to experimental warming were measured. Physiological and growth responses varied with the seedling ages. For 2-year-old L. kaempferi seedlings, stomatal conductance, transpiration rate and net photosynthetic rate decreased following the warming treatment, whereas there were no changes for 1-year-old L. kaempferi seedlings. Meanwhile, total chlorophyll content was higher in warmed plots regardless of the seedling ages. Net photosynthetic rate linked with stomatal conductance also decreased due to the drought stress and decrease of photosynthetic efficiency. In response to warming, RCD, height and biomass did not show significant differences between the treatments. It seems that the growth responses were not affected as much as physiological responses were, since the physiological responses were not consistent, nor the warming treatment period was enough to have significant results. In addition, multifactorial experiments considering the impact of decreased soil moisture resulting from elevated temperatures is needed to explicate the impacts of a wide range of possible climate change scenarios.

Effects of Fertilizer and Sewage Sludge Treatments on Germination and Growth of Woody Plants in Metal Mine Tailings

  • Lee, Sul-Ki;Cho, Do-Soon
    • The Korean Journal of Ecology
    • /
    • v.23 no.6
    • /
    • pp.445-452
    • /
    • 2000
  • The effects of sludge and fertilizer application on germination and seedling growth of woody plants on heavy metal mine tailings were evaluated by greenhouse experiment. Two different mine tailings (Lead-zinc mine tailings from Kwangmyong, Kyonggi-do and tungsten mine tailings from Sangdong. Kangwon-do). four fertilizer treatments (N +P +K: 20, 40, 60, and 80 kg/m$^3$), and four sewage sludge treatments (5.5, 11, 22.5, and 45 Mg/m$^3$) were used in the experiment. Tested plants were Pinus densiflora, Larix leptolepis, Amorpha fruticosa, and Alnus hirsuta. There were three replicates for each treatment. In addition, vermiculite was used instead of mine tailings to determine the effect of physical amendments. Fifty seeds of a species were sown in a pot (upper diameter 13.5 cm, depth 10 cm) and seedling emergence were recorded daily for 30 days. The highest germination rate was 53% for all treatments. Germination rate of Larix leptolepis was lowest among the four species studied. One month later after seeding, seedlings were thinned and only 5 seedling were left in each pot, and fertilizer and sewage sludge were applied once again. Growth of seedlings were determined for 10 weeks since then. Most plants grew very poorly or died within 5 weeks on lead/zinc mine tailings from Kwangmyong. The analysis of heavy metal contents by the total dissolution method showed that heavy metals generally increased in the order of tungsten mine tailings from Sangdong < sewage sludge from Puchon < lead/zinc mine tailings from Kwangmyong. Growth of woody plants was improved significantly by the fertilizer treatments on tungsten mine tailings. In contrast. survival and growth of woody plants were not affected significantly by the sewage sludge treatment on both tailings. This study shows that fertilizer applied to established seeded stands may provide some benefits in terms of increased ground cover in the field. It is suggested that reclamation should be proceeded by the study of the physico-chemical and biological characteristics of mine tailings.

  • PDF

Recent advances in seaweed seedling production: a review of eucheumatoids and other valuable seaweeds

  • Jiksing, Calvin;Ongkudon, McMarshall M.;Thien, Vun Yee;Rodrigues, Kenneth Francis;Yong, Wilson Thau Lym
    • ALGAE
    • /
    • v.37 no.2
    • /
    • pp.105-121
    • /
    • 2022
  • Modern seaweed farming relies heavily on seedlings from natural beds or vegetative cuttings from previous harvests. However, this farming method has some disadvantages, such as physiological variation in the seed stock and decreased genetic variability, which reduces the growth rate, carrageenan yield, and gel strength of the seaweeds. A new method of seedling production that is sustainable, scalable, and produces a large number of high-quality plantlets is needed to support the seaweed farming industry. Recent use of tissue culture and micropropagation techniques in eucheumatoid seaweed production has yielded promising results in increasing seed supply and growing uniform seedlings in large numbers in a shorter time. Several seaweed species have been successfully cultured and regenerated into new plantlets in laboratories using direct regeneration, callus culture, and protoplast culture. The use of biostimulants and plant growth regulators in culture media increases the seedling quality even further. Seedlings produced by micropropagation grew faster and had better biochemical properties than conventionally cultivated seedlings. Before being transferred to a land-based grow-out system or ocean nets for farming, tissue-cultured seedlings were recommended to undergo an acclimatization process to increase their survival rate. Regular monitoring is needed to prevent disease and pest infestations and grazing by herbivorous fish and turtles during the farming process. The current review discusses recent techniques for producing eucheumatoid and other valuable seaweed farming materials, emphasizing the efficiency of micropropagation and the transition from laboratory culture to cultivation in land-based or open-sea grow-out systems to elucidate optimal conditions for sustainable seaweed production.