• Title/Summary/Keyword: seedling growth and survival

Search Result 137, Processing Time 0.028 seconds

Quality of Yellow Poplar (Liriodendron tulipifera) Seedlings by the Method of Seedling Production (백합나무 양묘방법에 따른 묘목품질 비교)

  • Ryu, Keun-Ok;Song, Jeong-Ho;Choi, Hyung-Soon;Kwon, Hae-Yun;Kwon, Yong-Rak
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.3
    • /
    • pp.307-316
    • /
    • 2007
  • Yellow poplar (Liriodendron tulipifera L.) has low germination rate relatively other species, so the seedling production of Yellow poplar is a hard task. Accordingly this study was conducted to determine the optimal germination conditions for healthy seedling production and to promote survival rate after afforestation. Gemination percentage was examined at different media and seed covering materials using planting flats in the greenhouse. The best germination percentage was observed in sand for media and compound soil for covering materials. But it was time to transplant, seedlings became a poor character (i.e. height, root length, number of root, dry weight) in sand for media. In order to produce healthy seedlings, each different medium was compounded with TKS-2 (this is a gardening bed soil.) in the ratio 1:1 (v/v.), and compared two conditions. Quality of seedling was better than not mixed TKS-2 into each medium. Transplanting seedlings from greenhouse to nursery grew up rapidly 2 months later (early in August~early in October). Growth amount during two months corresponded to 85.6% and 71.3% in total growth amount of height and diameter at root collar, respectively. In the case of the competition-density effect on yellow-poplar seedlings, direct seedling produced the maximum 35 standard seedlings above 8 mm of root collar diameter per $m^2$, while transplanting seedling produced the maximum 64 standard seedlings per $m^2$. And produced seedlings of two way were significantly different rootlet while axial root and lateral root was not significantly different.

Egg Development and Lana Growth of the Scallop, Patinopecten yessoensis (가리비, Patinopecten yessoensis 난 발생과 유생의 성장)

  • 박영제;이정용;김완기;이채성
    • The Korean Journal of Malacology
    • /
    • v.17 no.2
    • /
    • pp.79-84
    • /
    • 2001
  • In order to obtain the basic information for seedling production of the scallop, Patinopecten yessoensis, the egg development and larva growth were investigated at different conditions such as water temperature, salinity and phytoplankton. Eggs were demersal isolated eggs, which averaged 77.3${\pm}$2.7$\mu\textrm{m}$ in diameter after spawning. The fertilized eggs developed to D-shaped larva of shell length 117.5${\pm}$3.8$\mu\textrm{m}$ after 60 hours at 15$^{\circ}C$. The range of water temperature and salinity during egg development were 10-20$^{\circ}C$ and 28-34 ppt, respectively. The time of egg development was shorter with higher water temperature. After 10 days of spawning, D-shaped larva reached 160 $\mu\textrm{m}$ in shell length, and after 25 days became full-grown larva 250 $\mu\textrm{m}$ in shell length, in which could be observed eye spots. The relative growth formula between shell length (SL) and shell height (SH) was SH = 1.0425SL-27.731 (r$^2$= 0.9749) during the entire larva period. In regard to water temperature, growth and survival rates of larvae were good at 16$^{\circ}C$. Lower growth and survival rates were observed at 12$^{\circ}C$ and 20$^{\circ}C$ than that at 16$^{\circ}C$. When larvae were fed mixed phytoplankters, such as isochrysis galbana, Pavlova lutheri and Chaetoceros calcitrans, their growth and survival rates were the highest among groups.

  • PDF

Changes in Quality and Vigour of Cucumber and Paprika Transplants as Affected by Storage Temperature under Dark Conditions

  • Kwack, Yurina;Chun, Changhoo
    • Horticultural Science & Technology
    • /
    • v.33 no.5
    • /
    • pp.633-637
    • /
    • 2015
  • Cucumber and paprika transplants were stored at 9, 12, 15, and $18^{\circ}C$ under dark conditions for 15 days and then grown in a greenhouse for 14 days after transplanting. To determine the effects of low storage temperature and long-term continuous darkness on the quality and vigour of transplants, we investigated the quality of transplants during storage and the growth of stored transplants after transplanting. In cucumber transplants, decreasing storage temperature reduced stem elongation and decrease in SPAD value. The quality of cucumber transplants stored at $9^{\circ}C$ was well preserved during storage, but they did not survive after transplanting due to chilling damage. Growth and development after transplanting were significantly greater when cucumber transplants were stored at $12^{\circ}C$. In paprika transplants, the quality of transplants did not significantly differ before and after storage. After transplanting, there was no significant difference in the survival rate and growth, but the number of flower buds was greater in the paprika transplants stored at lower temperatures (9 and $12^{\circ}C$). These results indicate that the responses of transplants to the conditions of low temperature and darkness differed between cucumber and paprika, and storage temperature in darkness must be controlled carefully considering species-specific responses to reduce quality deterioration during storage and improve the recovery of transplants after transplanting.

Seedling Plug and Cutting Method for Multi-propagation of Ornamental Miscanthus Spp. (조경용 억새의 대량번식을 위한 플러그묘와 삽목번식법)

  • Hwang, Kyung Sik;Joo, Song Tak;Ha, Soo Sung;Kim, Ki Dong;Joo, Young Kyoo
    • Weed & Turfgrass Science
    • /
    • v.7 no.3
    • /
    • pp.275-282
    • /
    • 2018
  • Miscanthus species are known as a genus of eco-friendly and low-maintenance cost ornamental grasses. Plug and cutting methods were tested for multi-propagation of most promising ornamental Miscanthus species in greenhouse and field plot. The plug formation period with three different cell sizes with four cultivars (M. sinensis 'Andersson', 'Strictus', 'Gracillimus', 'Variegatus') were evaluated the seedling development stages with two irrigation types of the over-head and the bottom watering in greenhouse and field plot afterward during 2015-2016 season. In seedling plug test, the size of tray cell affected the plug formation. Bottom irrigation resulted positively on plant height, weight, root and tiller development compared with the over-head irrigation. Plug cell size affected the plant growth in the field after transplanting. All of the 3 Miscanthus species showed higher rates of successful propagation at the lower nodes before inflorescence formation (vegetative growth stage). To analyze the survival factors of M. xgiganteus cutting, the cutting time, node part, and culm diameter were tested as independent variables with the binary logistic model. The survival probability was influenced by node part and culm diameter significantly. The third and fifth node parts showed 0.12 (8X higher failure probability) and 0.02 (50X higher failure probability) times less survival probability. It means the survival probability will be increased by using older and lower part of cuttings during a vegetative growth stage before inflorescences of M. xgiganteus.

Weather Characteristic and Growth of a Forest Ginseng Cultivation Site (산양삼 재배지의 기상특성 및 생육에 관한 연구)

  • Lee, Dong-Sup
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.6
    • /
    • pp.863-870
    • /
    • 2010
  • We investigated geographical condition and soil characteristic of ginseng cultivation site. At all sites, crown density adjusted by 80%. and Air and soil temperature were also measured. The geographical condition vary ato all sites. and soil shows similar characteristics with typical forest soil of Korea. The results shows the Air temperature needs to be higher than $15^{\circ}C$ for seed budding at April When soil temperature reach at 8, leaf of foest ginseng starts to bud. A forest ginseng is influenced by forest type, planting type and budding rates. In the case of a seedling planting, an seeding emergence rate is high, but the rate is decreased rapidly after three years On the other hand, direct seeding shows lower seedling emergence rate, but survival rate is higher than seedling-planting.

Effect of the Hopper of the Plug Transplanter and Moisture Content, Compaction Method, and Initial Irrigation of the Soil on the Seedling Survival rate at Transplant of Plug Seedling (플러그묘 정식시 정식기의 호퍼 크기, 토양수분, 초기관수량 및 진압방법이 작물에 미치는 영향)

  • 문성동;민영봉;박중춘
    • Journal of Bio-Environment Control
    • /
    • v.6 no.4
    • /
    • pp.258-263
    • /
    • 1997
  • The result was summarized of basic test and field test to find what quantity of irrigation, what state of compaction and what size of transplanting hopper could induce the optimum taking root in the transplantation of plug seedling by transplanters, and thus acquired the basic data for the development of the related transplanters and the optimum growth and development control. Livability of vegetables after transplanting had no significant difference with respect to for the size of hopper, but was greatly affected by the length of seedlings. The longest possible length of seedling for transplanting and optimal length were found to be 30cm and 28cm, respectively. For irrigation when transplanting red pepper or Chinese cabbage it was thought that large-sized hopper was appropriate. The livability of plug seedling 10 days after transplantation was mainly affected by soil moisture content. Consequently it was thought no irrigation would be needed when transplanting at the soil moisture content of more than 18% ; irrigation of more than 50cc would be needed at the soil moisture content of 13% : initial irrigation of more than 100cc and subsequent irrigation would be needed at the soil moisture content of less than 3.8%. The improvement of soil compaction method (left and right side compaction) with conventional semi-automatic transplanter was not necessary, since there was no difference in livability depending on the compaction methods, left-right side compaction or back-forth-left-right side compaction.

  • PDF

Indirect assessment of internal irradiation from tritium decay on Lemna Minor duckweed

  • Ifayefunmi, O.S.;Mirseabasov, O.A.;Synzynys, B.I.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.1991-1999
    • /
    • 2021
  • The response changes of the specific growth rate of Lemna minor duckweed was modeled using the logarithms of frond numbers on tritium activity concentration and gamma radiation dose from cobalt 60. The concept of average specific growth rate depends on the general exponential growth pattern, where toxicity is estimated based on the effect on the growth rate. One of the main questions of the effect of the radiation dose on duckweed is how to correlate the effect of beta radiation with the effect of any other radiation for modeling radiation on Lemna minor. Experimental data were extrapolated by utilizing the OECD guidelines. A linear relationship of absorbed dose and activity concentration was obtained for the average dependency growth rate of Lemna minor as D = (0.1257)·A0.585. The dose rate of gamma irradiation from 60Co increases with tritium activity dependence, on the specific growth rate of the Lemna minor duckweed. An increase in the tritium activity causes a decrease in the specific growth rate of the Lemna minor duckweed. It indicates that as the quantity of the beta radiation dose increase in Lemna minor duckweed, a higher quantity of gamma radiation will be required to cause the same effect in the specific growth rate of Lemna minor duckweed. The relation between the inhibition of the Lemna minor seedling growth and gamma and beta radiation dosage agrees roughly with that between the decrease of survival rate or fertility and dosage.

Experimental Study on Modular Community Planting for Natural Forest Restoration (자연림 복원을 위한 모듈군락식재 실험연구)

  • Han, Yong-Hee;Park, Seok-Gon
    • Korean Journal of Environment and Ecology
    • /
    • v.36 no.3
    • /
    • pp.338-349
    • /
    • 2022
  • This study aims to investigate whether modular community planting, which entailed planting a variety of species of seedlings at high density, was more effective in restoring natural forests than the existing mature tree planting. We also investigated whether the planting density of the modular community planting facilitates growth or improves the tree layer coverage. We conducted outdoor experiments in which the samples were divided into a mature tree planting plot (control plot), where mature trees were planted at wide intervals, and a modular community planting (MCP) plot (treatment plot), where multiple seedlings were planted in high density. The MCP plot was further divided into the plot in which 3 seedlings were planted per m2 and the plot of 1 seedling per m2. We measured the specimens' survival rate, growth rate (tree height, crown width, and root collar diameter), and cover rate for 26 months from May 2019 and the predicted future tree height growth using the measured tree height. The survival rate and relative growth rate of the MCP were higher than those of the mature tree planting plot. The vertical coverage rate of the tree crown in the MCP exhibited complete coverage of the ground before 23 months, while the coverage rate of the mature tree planting decreased due to transplantation stress. The seedlings in the MCP, which were planted at high density, grew well and were predicted to grow higher than the mature trees in the large tree planting plot within 5 to 6.5 years after planting. It was due to multiple species, seedlings, high-density planting, and planting foundation improvements, such as soil enhancement and mulching. In other words, the seedlings planted in the MCP had a higher survival rate as their environmental adaptation after planting was better, and their early growth was also larger than the trees in the mature planting plot. The high-density mixed planting of various native species not only mitigated the inter-complementary environmental pressures but also facilitated growth by inducing competition between species. Moreover, the planting foundation improvement effectively increased the seedlings' viability and growth rate. A reduction in follow-up management costs is expected as the tree layer coverage sharply increases due to the higher planting density. In the MCP (3 seedlings per m2 and 1 seedling per m2), the tree height growth was promoted with the higher planting density, and the crown width and root collar diameter tended to be larger with the lower planting density, but these differences were not statistically significant.

Rooting Rate and Survival Rate as Affected by Humidification Period and Medium Type of 'Maehyang' Strawberry on Cutting Propagation ('매향' 딸기의 삽목 번식 시 가습 기간 및 배지 종류에 따른 발근율과 생존율)

  • Hwang, Hee Sung;Jeong, Hyeon Woo;Lee, Hye Ri;Hwang, Seung Jae
    • Journal of Bio-Environment Control
    • /
    • v.29 no.3
    • /
    • pp.219-230
    • /
    • 2020
  • This study was conducted to determine the optimum medium and humidification period for the strawberry (Fragaria × ananassa Duch. cv. Maehyang) cutting seedling production. The cuttings were planted in coir (CO), rockwool (RW), phenolic foam (PF), and organic foam medium (OFM) with fogging treatment in 0, 3, 6, 9, or 12 days on February, 2019. And, as the field verification examination research, cuttings were planted in CO, RW, PF, and OFM, with misting treatment in 0, 6, 9, 12, or 15 days on June, 2019. In fogging treatments, rooting and survival rates of seedlings tended to increase with longer fogging periods, and rooting and survival rates were showed significantly higher in CO medium with more than 9 days of fogging periods. In misting treatments, rooting rate was significantly higher in CO and RW medium with more than 9 days of misting periods, and survival rate was significantly higher with more than 12 days of misting periods. There was no significantly difference by growth medium and humidification period in shoot and root growth. Therefore, when considering the rooting and survival rate the CO medium with 9 days of humidification period could be beneficial for the production of the 'Maehyang' strawberry cutting seedlings.

Effects of Gamma-ray and Chemical Mutagens on the Germination and Seedling Growth in Stevia rebaudiana Bert. (감마선 및 화학적 돌연변이원 처리가 스테비아 (Stevia rebaudiana Bert.)의 종자 발아 및 초기 생장에 미치는 영향)

  • Yoon, Tai-Young;Kim, Ee-Youb;Kim, Young-Ho;Choi, Gin-Su;Hyun, Kyung-Sup;Seong, Yoon-Hee;Jo, Han-Jig;Kim, Dong Sub;Kang, Si-Yong;Ko, Jeong-Ae
    • Journal of Radiation Industry
    • /
    • v.6 no.2
    • /
    • pp.189-197
    • /
    • 2012
  • This study was carried out to develop the improved useful mutants for yield or composition of stevia plants using the gamma ray or chemical mutagens treatments. The seeds of stevia 'Suwon No. 11' were irradiated up to 400 Gy of gamma ray. Chemical mutagens were treated on the seeds of the 'Suwon No. 11' using 0.07% colchicine, 10 mM sodium azide, or 10 mM NMU for various durations. The germination rate, and shoot and root growth of seedling were estimated at 30 days after gamma ray irradiation or chemical mutagen treatment, and the plant height, the number of branches, and leaf length and width were examined at 3 months after mutagenesis treatments. In the case of gamma ray treatments, the germination rate and early-stage growth were decreased as the increase of radiation dose, and the 50% lethal dose was found to be 200 Gy. the plant height was decreased as the increase of radiation dose, while the number of branches per plant and leaf length were increased. Leaf shape was modified to the relatively longer one compared to the control, which was identified more apparently at the treatments of higher than 150 Gy. In the treatment of chemical mutagens, the rate of germination and survival were decreased as the increase of incubation time. The 50% lethal dose for germination rate were identified as the conditions of the 15 hours incubation in 0.07% colchicine, the 4 hrs in 10 mM sodium azide, and the 2 hrs in 10 mM NMU, in the three chemical mutagens treatments. Chemical mutagens had no influence on shoot growth, while root growth was increased, especially as the incubation time was extended. The highest root growth occurred in the NMU treatment at 6 hrs incubation time. The plant height was decreased as the increase of incubation time in the chemical mutagens treatments. Among the chemical mutagens, NMU was the most effective to induce the mutants with long-shaped or the least lobed leaves.