• Title/Summary/Keyword: seedling dynamics

Search Result 24, Processing Time 0.032 seconds

A study on the flow characteristics of floating seedling equipment using computational fluid dynamics (Computational Fluid Dynamics를 이용한 부유식 새꼬막 채묘장치의 유동 특성에 관한 연구)

  • Yong-Beom PYEON;Kyung-Hoon LEE;Hwan-Seok CHOI;In-Tae LEE;Hyoung-Ho KIM;Chang-Je LEE
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.59 no.2
    • /
    • pp.164-171
    • /
    • 2023
  • This study analyzed the flow inside floating seedling equipment for Scapharca subcrenata. Due to the aging society of fishing villages, it is impossible to continuously input the labor force. Therefore, it is necessary to improve efficiency. Scapharca subcrenata has high per capita consumption. It serves as an important aquatic food resource. Scapharca subcrenata culture tends to be highly dependent on the natural environment. Production of Scapharca subcrenata is difficult to predict with low stability. In the past, manpower directly installed bamboo nets in mudflats. The seedling equipment devised in this study is a floating type and can be freely moved on the sea according to the prediction of Scapharca subcrenata generation. The flow around the floating seedling equipment was analyzed by numerical analysis. The physical phenomena of the flow around the net inside the floating seedling equipment were visualized. As a result, the space between the floating seedling equipment and the bottom net and the space between the net groups showed a lower flow rate than the inlet flow rate. It is expected that the low flow rate of the floating seedling equipment will have a positive effect on the attachment of Scapharca subcrenata.

Population Dynamics of Quercus mongolica in Mt. Jumbong

  • Cho, Do-Soon
    • The Korean Journal of Ecology
    • /
    • v.22 no.6
    • /
    • pp.355-361
    • /
    • 1999
  • Distribution of size class, population regeneration and changes in the population structure of Quercus mongolica were studied from 1994 to 1999 in Mt. Jumbong (128°27' E, 38° 04' N) of Mt. Sorak National Park and Biosphere Reserve in central Korea. Three 20m × 20m permanent quadrats were set up at the elevation of 900m. The vegetation of the study site was dominated by Quercus mongolica and Acer pseudosieboldianum, but little change was observed in the community structure from 1995 to 1999. Most mortality in the study site was observed in small trees of A. pseudosieboldianum and Tilia amurensis. Mean annual growth in dbh (diameter of breast height) of Q. mongolica for 4 years was only 0.09cm, and no ingrowth of saplings (dbh < 2.5cm) into tree class was observed during the study period. Among the 21 Q. mongolica trees studied in the permanent quadrats. all the smaller trees (dbh < 30cm) were established in 1920 ∼ 1950, while many bigger trees (with 40cm < dbh < 80cm) were established in 1750 ∼ 1800, indicating that its establishment was episodic. Distribution of dbh classes among Q. mongolica trees shows that smaller trees were poorly represented, and no saplings of Q. mongolica occurred in the permanent quadrats studied, indicating that currently Q. mongolica is not regenerating well in the study site. Total seed production of Q. mongolica in 1994 was estimated as 88 acorns per square meter in the study site. Rate of predation including caching of acorns was highest in 1994, then declined sharply thereafter. Most of the acorns which managed to survive in the first year were predated in the second year, and only 5% of the acorns produced in 1994 survived into the third year. No seeds produced in 1994 or seedlings germinated from them succeeded to survive to 5 years after seed production. However, seedling emergence rate and seedling survival were high in the early growing season in 1995. These results suggest that predation can be a significant factor in the regeneration of Q. mongolica. and that Q. mongolica is not regenerating well in Mt. Jumbong and needs large scale disturbances for its new recruitment.

  • PDF

Population Structure, and Emergence and Growth Dynamics of Seedling, and Spatial Distribution of Dendropanax morbifera Lev.(Araliaceae) (황칠나무의 집단구조와 치수의 발생과 생육동태 및 공간분포)

  • 정재민
    • Korean Journal of Plant Resources
    • /
    • v.11 no.3
    • /
    • pp.345-352
    • /
    • 1998
  • A Korean endemic and evergreen small tree ' Dendropanax morbifera $L_{EV}$.(Araliaceae)' is a component of evergreen forest and mainly idstributein sourthern region and islands in Korea. A local population of D. morbifera which is located between evergreen and deciduous forest within 50m x 50m quadrate was investigated to ascertain the change of population structure, emergence and growth dynamics of seedlings and saplings, and pattern of spatial distribution by the temproal and spatial expansion of population . The result of analysis of population structure by Importnace Value(IV), evergreen forest showed a high species diversity of evergreen tree species such as Cinnamomum japonicum, Machilus japonica, Neolitsea serica, Daphniphyllum macropodum, Ligustrum japonicum, and etc, in middle and under story than in upper story where Camelia japonica and Quercus acuta were dominant. And in conterminous deciduous fores, the major component of evergreen forest in this region, Camellia japonica, Quercus acuta, evergreen tree of Lauraceae and etc. were abundant in only under story. IV of D. morbifera differed from among three story. In comparative analysis of emergence and growth dynamics of D. morbifera seedlings and saplings between evergreen and deciduous forest, emergece and density of seedlings were significantly greater in evergreen than in deciduous forest, and growth of height and basal diameter of seedlings and saplings were slightly larger in evergreen than in deciduous forest. The spatial distribution patterns by Moristia's index mapping of indivuduals using a lattice method of XY axis within this population showed that seedlings(age up to 2 years) and saplings (age>2 years and height<1m) both evergreen and deciduous forest were more or less aggregated apart from mature trees, and thougth intermediate trees(height>1m and dbh<10cm) had a aggregated distribution pattern, mature trees(dbh>10cm were uniform. In conclusion , the expansion of D. morbfera population from evergreen to deciduous forest accompanied with a mumber of evergreen woody species, and also, emergence and recruitment, and growth of seedlings were greatly influenced moisture and canopy by around community structure.

  • PDF

Biomass and Carbon Storage Pattern in Natural and Plantation Forest Ecosystem of Chhattisgarh, India

  • Jhariya, Manoj Kumar;Yadav, Dhiraj Kumar
    • Journal of Forest and Environmental Science
    • /
    • v.34 no.1
    • /
    • pp.1-11
    • /
    • 2018
  • We studied natural and plantation forest ecosystem of Sarguja in Chhattisgarh, India in order to understand how vegetation biomass, carbon stock and its allocation patterns vary among the sites. For this, stratified random sampling was opted to measure the different layers of vegetation. Wide floral diversity was found in the natural forest site as compared to the teak stand. Overall, 17 tree species found in natural forest comprising 8 families while in the teak stand 6 species were recorded. In understory strata 23 species were recorded (18 herbs and 5 shrubs) in natural forest whereas in teak stand 20 herb species and 3 shrubs were found. Great variation was also seen in the population dynamics of the different vegetation stratum in concerned sites. The sapling, seedling and herb density was found to be highest in natural stand while tree and shrub density was more in teak stand. Results indicated that stand biomass of the natural site was $321.19t\;ha^{-1}$ while in the teak stand it was $276.61t\;ha^{-1}$. The total biomass of tree layer in plantation site was $245.22t\;ha^{-1}$ and natural forest $241.44t\;ha^{-1}$. The sapling, seedling, shrub and forest floor biomass was found highest under natural forest as compared to the teak plantation site. Carbon stock has similar trend as that of biomass accumulation in natural forest and teak stand. Higher biomass accumulation and carbon stock were recorded in the higher girth class gradation of the population structure. Proper efforts are required to manage these diverse ecosystems to obtain higher biomass and sustainable ecological services.

Seed-born Burkholderia glumae Infects Rice Seedling and Maintains Bacterial Population during Vegetative and Reproductive Growth Stage

  • Pedraza, Luz Adriana;Bautista, Jessica;Uribe-Velez, Daniel
    • The Plant Pathology Journal
    • /
    • v.34 no.5
    • /
    • pp.393-402
    • /
    • 2018
  • Rice world production is affected due to the growing impact of diseases such as bacterial panicle blight, produced by Burkholderia glumae. The pathogen-induced symptoms include seedling rot, grain rot and leafsheath browning in rice plants. It is currently recognized the entrance of this pathogen to the plant, from infected seeds and from environmental sources of the microorganism. However, it is still not fully elucidated the dynamics and permanence of the pathogen in the plant, from its entry until the development of disease symptoms in seedlings or panicles. In this work it was evaluated the infection of B. glumae rice plants, starting from inoculated seeds and substrates, and its subsequent monitoring after infection. Various organs of the plant during the vegetative stage and until the beginning of the reproductive stage, were evaluated. In both inoculation models, the bacteria was maintained in the plant as an endophyte between $1{\times}10^1$ and $1{\times}10^5cfu$ of B. $glumae.g^{-1}$ of plant throughout the vegetative stage. An increase of bacterial population towards initiation of the panicle was observed, and in the maturity of the grain, an endophyte population was identified in the flag leaf at $1{\times}10^6cfu$ of B. $glumae.g^{-1}$ fresh weight of rice plant, conducting towards the symptoms of bacterial panicle blight. The results found, suggest that B. glumae in rice plants developed from infected seeds or from the substrate, can colonize seedlings, establishing and maintaining a bacterial population over time, using rice plants as habitat to survive endophyticly until formation of bacterial panicle blight symptoms.

Subcellular partitioning-dependent functional switching of Arabidopsis photoreceptor phytochrome B in response to brassinosteroids

  • Ryu, Jong-Sang;Choi, Hyun-Mo;Hong, Sung-Hyun;Matsushita, Tomonao;Nagatani, Akira;Nam, Hong-Gil
    • Interdisciplinary Bio Central
    • /
    • v.1 no.1
    • /
    • pp.1.1-1.5
    • /
    • 2009
  • Many organisms control their physiology and behavior in response to the local light environment, which is first perceived by photoreceptors that undergo light-dependent conformational changes. Phytochromes are one of the major photoreceptors in plants, controlling wide aspects of plant physiology by recognizing the light in red (R) and far-red (FR) spectra. Higher plants have two types of phytochromes; the photo-labile type I (phyA in Arabidopsis) and photo-stable type II (phyB-E in Arabidopsis). Phytochrome B (phyB), a member of the type II phytochromes in Arabidopsis, shows classical R and FR reversibility between the inter-convertible photoisomers, Pr and Pfr. Interestingly, the Pr and Pfr isomers show partitioning in the cytosol and nucleus, respectively. In the over 50 years since its discovery, it has been thought that the type II phytochromes only function to mediate R light. As described in the text, we have now discovered phyB has an active function in FR light. Even striking is that the R and FR light exert an opposite effect. Thus, FR light is not simply nullifying the R effect but has an opposing effect to R light. What is more interesting is that the phyB-mediated actions of FR and R light occur at different cellular compartment of the plant cell, cytosol and nucleus, respectively, which was proven through utilization of the cytosolic and nuclear-localized mutant versions of phyB. Our observations thus shoot down a major dogma in plant physiology and will be considered highly provocative in phytochrome function. We argue that it would make much more sense that plants utilize the two isoforms rather than only one form, to effectively monitor the changing environmental light information and to incorporate the information into their developmental programs.

The Change of Seedling Emergence of Abies koreana and Altitudinal Species Composition in the Subalpine Area of Mt. Jiri over Short-Term(2015-2017) (지리산 아고산대의 단기간(2015-2017)에 걸친 구상나무 치수 발생 및 고도별 종구성 변화)

  • Kim, Ji Dong;Park, Go Eun;Lim, Jong-hwan;Yun, Chung Weon
    • Korean Journal of Environment and Ecology
    • /
    • v.32 no.3
    • /
    • pp.313-322
    • /
    • 2018
  • To investigate the changing patterns of sub-alpine forest vegetation due to climate change requires accumulation of contiguous reference data and continuous monitoring. Furthermore, it is crucial to monitor short-term ecological change of lower level vegetation to understand the trend of long-term vegetation change. Therefore, this study carried out a vegetation survey and tree diameter measurement in 36 plots of Mt. Jiri inhabited by Abies koreana species from 2015 to 2017 to examine the short-term dynamics of Abies koreana seedling and the change of vegetation distribution according to altitude. We analyzed the importance value and MIV (mean importance value) of major species by each stratum as well as the importance value and species diversity index of major species and the change of seedling population by altitude. The results showed that Abies koreana had the highest importance value on tree layer, Rhododendron schlippenbachii on shrub layer and Tripterygium regelii on herb layer. MIV was high in the order of Abies koreana, Rhododendron schlippenbachii and Acer pseudosieboldianum. Regarding the species composition and species diversity index (H') along the altitudinal gradient, Sasa borealis showed high MI and low H' in the elevation less than 1,500 m, and IV of Tripterygium regelii and H' of herb layer were high in the elevation of 1,700 - 1,800 m. Abies koreana seedling decreased by 22.4% from 1,250 n/ha in 2015 to 970 n/ha in 2017 (p <0.05) throughout the investigated area. The decline rate along seedling and sapling height were 22.9% in less than 10 cm, 3.4% in 10-30 cm, 8.9% in 30-50 cm, 39.3% in 50-100 cm, and 55.1% more than 100 cm. Few of A. koreana seedlings appeared due to the dominance of Sasa borealis in the elevation of 1,500 m or less and due to the dominance and high species diversity of Tripterygium regelii in the elevation of 1,700-1,800 m. On the other hand, many of A. koreana seedlings appeared in the elevation of 1,600-1,700 m due to no distribution of S. borealis and T. regelii species in that altitude range. Therefore, we concluded that those seedlings and saplings of A. koreana could be more stable in the altitude of 1,600-1,700 m.

Impact of parthenium weed invasion on plants and their soil seedbank in a subtropical grassland, central Nepal

  • Khatri-Chettri, Jyoti;Rokaya, Maan Bahadur;Shrestha, Bharat Babu
    • Journal of Ecology and Environment
    • /
    • v.46 no.1
    • /
    • pp.8-17
    • /
    • 2022
  • Background: Parthenium hysterophorus L. (Asteraceae; hereafter Parthenium) is an invasive alien species of global significance because of its' negative ecological and socioeconomic impacts. This species is spreading rapidly from lowland Tarai to Middle Mountain regions in Nepal. In the present study, we analyzed the impacts of Parthenium on plant community composition including their soil seedbank in subtropical grasslands located in central Nepal. Data was collected in a 10 m long transects passing through areas of high (> 90% cover), medium (40%-60%) and low (< 10%) levels of Parthenium cover using a plot of 1 m2. Altogether, we sampled 90 plots in 30 transects. Seedling emergence method was used to estimate soil seedbank density in the soil samples (0-10 cm depth) collected from the plots with high Parthenium cover. Results: There was no significant difference in the plant species richness at different levels of Parthenium invasion whereas there was a significant change in the species composition of above ground flora due to Parthenium invasion. There was also a significant difference in species composition between soil seedbank and aboveground flora in the highly invaded plots. Parthenium was the most dominant in soil seedbank, contributing 65% to the total soil seedbank. Conclusions: Our study suggests that Parthenium has considerable negative impact on the native grassland flora, and the dominance of Parthenium in the soil seedbank means there is a challenge for its management. It also suggests the need of monitoring the soil seedbank dynamics while managing Parthenium weed.