• Title/Summary/Keyword: seedling development

Search Result 581, Processing Time 0.026 seconds

The Selection Proper Materials to Develop Specialized Root Substrate for Working with Bulb Onion Transplanter (양파 정식기용 전용 상토에 적합한 상토 재료 선발)

  • Min, Byeonggyu;ha, Injong;Lee, Jongtae;Choi, Silim;Lee, Sangdae
    • Journal of Bio-Environment Control
    • /
    • v.25 no.2
    • /
    • pp.100-105
    • /
    • 2016
  • In this study we investigated the suitability of horticultural main organic root substrate materials (peatmoss, coir) for the development proper root substrate for working with bulb onion transplanter. We investigated seedling sprout ratio, growth and characteristics (bulk density, root substrate cohesion) those are suitable for mechanical transplanting by mixing with inorganic materials(red clay etc.). Although both seedling growth and root substrate bulk density were similar in peatmoss and coir based root substrates, we found that peatmoss mixing had higher root substrate cohesion compared to coir mixing. We assume that higher cohesion properties of peatmoss based root substrate will give more weight of root part during mechanical transplanting of young onion seedlings in the field. Because of this, we suggest that peatmoss is the appropriate ingredient for developing root substrates for working with bulb onion transplanter.

Construction of Antibodies for Detection and Diagnosis of Cucumber green mottle mosaic virus from Watermelon Plants

  • Shim, Chang-Ki;Lee, Jung-Han;Hong, Sun-Min;Han, Ki-Soo;Kim, Hee-Kyu
    • The Plant Pathology Journal
    • /
    • v.22 no.1
    • /
    • pp.21-27
    • /
    • 2006
  • We immunized BALB/c mice with purified Cucumber green mottle mosaic virus isolate HY1 (CGMMV-HY1). Through the selection of positive clones that were grown on the HAT medium, four sensitive monoclonal clones (CG99-01, CG99-02, CG99-03, and CG99-04) were selected from 500 Hypoxanthine-guanine phosphoribosyltransferase positive hybridoma cells. Four sensitive clones of CGMMV-HYI were determined as IgM type of the subclass of mouse immunoglobulins Ig group. The titer of monoclonal antiserum against CGMMVHY1 was estimated 1:12,800 by the indirect ELISA. Although monoclonal antibodies (MAbs) from CG99-01 and from CG99-04 cross-reacted with Zucchini green mottle mosaic virus and Kyuri green mottle mosaic virus, MAb from the cell line CG99-03 was highly specific to CGMMV. No MAbs cross-reacted with Cucumber mosaic virus-Fny. Only CG99-04 reacted with Pepper mild mottle virus weakly and CG99-02 reacted with both CGMMV and KGMMV. CGMMV was detected from the rind of watermelon fruit by DAS-ELISA of CGMMV-HY1, but not from the flesh of watermelon. Average seed transmission rate of CGMMV in watermelon was $24\%$ from symptomatic watermelon collected from 5 regions of Gyeongnam province. CGMMV was detected by DAS-ELISA with specific MAb of CGMMVHY1 periodically from root stock, during the sequential process for nursery seedling in Haman. Necrotic spots on cotyledons of root stock seedling progressed to reveal the typical symptomatology on the primary leaves of scion upon grafting. Here, we have established MAb based ELISA system, which could accurately detect CGMMV from watermelon seeds, nursery seedlings, transplants and field samples from greenhouse or open out door field as well.

Growth Promotion of Pepper Plants by Pantoea ananatis B1-9 and its Efficient Endophytic Colonization Capacity in Plant Tissues

  • Kim, Su-Nam;Cho, Won-Kyong;Kim, Won-Il;Jee, Hyeong-Jin;Park, Chang-Seuk
    • The Plant Pathology Journal
    • /
    • v.28 no.3
    • /
    • pp.270-281
    • /
    • 2012
  • The bacteria B1-9 that was isolated from the rhizosphere of the green onion could promote growth of pepper, cucumber, tomato, and melon plants. In particular, pepper yield after B1-9 treatment on the seedling was increased about 3 times higher than that of control plants in a field experiment. Partial 16S rDNA sequences revealed that B1-9 belongs to the genus Pantoea ananatis. Pathogenecity tests showed non-pathogenic on kimchi cabbage, carrot, and onion. The functional characterization study demonstrated B1-9's ability to function in phosphate solubilization, sulfur oxidation, nitrogen fixation, and indole-3-acetic acid production. To trace colonization patterns of B1-9 in pepper plant tissues, we used $DRAQ5^{TM}$ fluorescent dye, which stains the DNAs of bacteria and plant cells. A large number of B1-9 cells were found on the surfaces of roots and stems as well as in guard cells. Furthermore, several colonized B1-9 cells resided in inner cortical plant cells. Treatment of rhizosphere regions with strain B1-9 can result in efficient colonization of plants and promote plant growth from the seedling to mature plant stage. In summary, strain B1-9 can be successfully applied in the pepper plantation because of its high colonization capacity in plant tissues, as well as properties that promote efficient plant growth.

The Gene fpk1, Encoding a cAMP-dependent Protein Kinase Catalytic Subunit Homolog, is Required for Hyphal Growth, Spore Germination, and Plant Infection in Fusarium verticillioides

  • Pei-Bao, Zhao;Ren, Ai-Zhi;Xu, Hou-Juan;Li, Duo-Chuan
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.1
    • /
    • pp.208-216
    • /
    • 2010
  • Fusarium verticillioides is an important pathogen of maize, being responsible for ear rots, stalk rots, and seedling blight worldwide. During the past decade, F. verticillioides has caused several severe epidemics of maize seedling blight in many areas of China, which lead to significant losses. In order to understand the molecular mechanisms regulating fungal development and pathogenicity in this pathogen, we isolated and characterized the gene fpk1 (GenBank Accession No. EF405959) encoding a homolog of the cAMP-dependent protein kinase catalytic subunit, which included a 1,854-bp DNA sequence from ATG to TAA, with a 1,680-bp coding region, and three introns (lengths: 66 bp, 54 bp, and 54 bp), and the predicated protein precursor had 559 aa. The mutant ${\Delta}fpk1$, which was disrupted of the fpkl gene, showed reduced vegetative growth, fewer and shorter aerial mycelia, strongly impaired conidiation, and reduced spore germination rate. After germinating, the fresh hypha was stubby and lacking of branch. When inoculated in susceptible maize varieties, the infection of the mutant ${\Delta}fpk1$ was delayed and the infection efficiency was reduced compared with that of the wild-type strain. AU this indicated that gene fpk1 participated in hyphal growth, conidiophore production, spore germination, and virulence in F. verticillioides.

Seed-born Burkholderia glumae Infects Rice Seedling and Maintains Bacterial Population during Vegetative and Reproductive Growth Stage

  • Pedraza, Luz Adriana;Bautista, Jessica;Uribe-Velez, Daniel
    • The Plant Pathology Journal
    • /
    • v.34 no.5
    • /
    • pp.393-402
    • /
    • 2018
  • Rice world production is affected due to the growing impact of diseases such as bacterial panicle blight, produced by Burkholderia glumae. The pathogen-induced symptoms include seedling rot, grain rot and leafsheath browning in rice plants. It is currently recognized the entrance of this pathogen to the plant, from infected seeds and from environmental sources of the microorganism. However, it is still not fully elucidated the dynamics and permanence of the pathogen in the plant, from its entry until the development of disease symptoms in seedlings or panicles. In this work it was evaluated the infection of B. glumae rice plants, starting from inoculated seeds and substrates, and its subsequent monitoring after infection. Various organs of the plant during the vegetative stage and until the beginning of the reproductive stage, were evaluated. In both inoculation models, the bacteria was maintained in the plant as an endophyte between $1{\times}10^1$ and $1{\times}10^5cfu$ of B. $glumae.g^{-1}$ of plant throughout the vegetative stage. An increase of bacterial population towards initiation of the panicle was observed, and in the maturity of the grain, an endophyte population was identified in the flag leaf at $1{\times}10^6cfu$ of B. $glumae.g^{-1}$ fresh weight of rice plant, conducting towards the symptoms of bacterial panicle blight. The results found, suggest that B. glumae in rice plants developed from infected seeds or from the substrate, can colonize seedlings, establishing and maintaining a bacterial population over time, using rice plants as habitat to survive endophyticly until formation of bacterial panicle blight symptoms.

The Effects of Seed Size on the Early Seedling Growth and Yield of Three Soybean(Glycine max. L.) Cultivars (대두종자(大豆種子)의 대소(大小)가 초기생육(初期生育) 및 수량(收量)에 미치는 영향(影響))

  • Park, Ki Sun;Choi, Chang Yeol;Kang, Jea Chul
    • Korean Journal of Agricultural Science
    • /
    • v.16 no.2
    • /
    • pp.138-151
    • /
    • 1989
  • In order to find the effects of seed size on the early seedling growth and yield of soybean, three soybean cultivars in Korea were investigated. Seed size was classified into large and small according to the weight and planted in pots(1/5000a) and in the field. Three soybean cultivars respresenting large, medium and small grains were Hwangkeum-kong, Kwangkyo and Bangsa-kong respectively. These cultivars were planted on June 20, 1987. 1. The plant height, stem diameter, root length and leaf area index(LAI) of the seed with large size seemed larger than the seed with small size regardless of cultivars. 2. The fresh and dry weight were different depending upon the grain sizes. The large grain had heavier fresh and dry weight than the small grains. 3. The protein consumption rate of the cotyledon of Bangsa-kong with small grain size was faster than the Hwangkeum-kong with large grain size. 4. The stem length, stem diameter and number of main stem node of the seed with large size seemed larger than the seed with small size. Large grains of Hwangkeum-kong were the highest in the number of branch node and number of node. 5. The number of pods and grains per plant of Bangsa-kong with small grain size was larger than the Kwangkyo with large grain size. 6. The yield per 10a for Hwangkeum-kong, Hwangkyo and Bangsa-kong were 226.3kg, 193.0kg and 192.8kg, respectively and they were all statistically different. The yield increases of large grains over small grains in the Hwangkeum-kong, Kwangkyo, and Bangsa-kong were 7.4%, 8.0% and 9.2%, respectively.

  • PDF

Effects of Fungicidal Drenches on Damping-off Organisms in Ginseng Seed Bed and Yield of the Seedling Root (살균제의 토양관주에 따른 인삼모잘룩병균(자묘입고병균)의 숫적면화(수적변화) 및 묘삼뿌리의 수량)

  • Choi Hah Ja;Chung Hoo Sup
    • Korean journal of applied entomology
    • /
    • v.10 no.1
    • /
    • pp.7-12
    • /
    • 1971
  • 1. The number of Rhizoctonia solani, Pythium debaryanum, Fusarium and Trichoderma was detected by the modification of Boosails special plating method when ginseng seed bed was drenched with Captan, Difolatan, Zineb, Maneb and PCNB at weekly intervals. Pythium debaryanum Hesse was described for the first time on Panax ginseng in Korea. 2. The number of Rhizoctonia solani and Pythium debaryanum was decreased gradually as the geason Progressed, whereas that of Fusarium and rrichcderma was increased. 3, The number of Rhixoctonia solani was greatly reduced by PCNB, and soils treated with other fungicides generally showed less Rhizoctonie solani than in the control. The number of Pythium debaryanum was significantly reduced by Zineb, Maneb, followed by Captan and Difolatan. None of the fungicids reduced the number of Fusarium colonies in the fourth week. Effects of the chemicals on Trichoderma were not statistically significant. 4. More fresh weight of the seedling roots was obtained using Difolatan, Maneb and PCNB. Phytotoxicity was noted with Maneb, Zineb and Captan after the third treatment.

  • PDF

Development of efficient protocol for screening of rice genotypes using physiological traits for salt tolerance

  • Kim, Sung-Mi;Reddy, Inja Naga Bheema Lingeswar;Yoon, In Sun;Kim, Beom-Gi;Kwon, Taek-Ryoun
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.189-189
    • /
    • 2017
  • Salinity is one of the major abiotic stresses that severely affect crop production throughout the world; especially rice plant which is generally categorized as a typical glycophyte as it cannot grow in the presence of salinity. Phenotypic resistance of salinity is expressed as the ability to survive and grow in a salinity condition. Salinity resistance has, at least implicitly, been treated as a single trait. Physiological studies of rice suggest that a range of characteristics (such as low shoot sodium concentration, compartmentation of salt in older rather than younger leaves, high potassium concentration, high $K^+/Na^+$ ratio, high biomass and plant vigour) would increase the ability of the plant to cope with salinity. Criteria for evaluating and screening salinity tolerance in crop plants vary depending on the level and duration of salt stress and the plant developmental stage. Plant growth responses to salinity vary with plant life cycle; critical stages sensitive to salinity are germination, seedling establishment and flowering. We have established a standard protocol to evaluate large rice germplasms for overall performance based on specific physiological traits for salt tolerance at seedling stage. This protocol will help in identifying germplasms which can perform better in the presence of different salinity treatments based on single trait and also combination of different physiological traits. The salt tolerant germplasm can be taken forward into developing better varieties by conventional breeding and exploring genes for salt tolerance.

  • PDF

Stem Rot of Sweet Potato (Ipomoea batatas) Caused by Sclerotium rolfsii in Korea (Sclerotium rolfsii에 의한 고구마 흰비단병)

  • Kim, Ju-Hee;Kim, Shin-Chul;Cheong, Seong-Soo;Choi, Kyu-Hwan;Kim, Du-Yeon;Shim, Hong-Sik;Lee, Wang Hyu
    • Research in Plant Disease
    • /
    • v.19 no.2
    • /
    • pp.118-120
    • /
    • 2013
  • During the early spring of 2007 to 2009, stem rot of sweet potato (Ipomoea batatas L.) caused by Sclerotium rolfsii occurred in seedling stage grown in plastic film house at Iksan. In seedling stage of sweet potato, symptoms were initially appeared in yellowing and then the seedlings were eventually wilted. The fungus produced abundant white silky mycelium on infected tissues and soil line. Seedlings were very susceptible and died quickly once they were infected. The whole area of a petridish was rapidly covered with white mycelium on agar medium. Sclerotia began to produce after 7 days of mycelial growth and white sclerotia quickly melanized to a dark brown coloration. The causal agent isolated from the diseased plants was identified as Sclerotium rolfsii Saccardo on the basis of the morphological and cultural characteristics. All isolates of S. rolfsii caused similar symptoms on the host petioles by artificial inoculation.

Effect of Low Dose of Gamma Radiation on the Growth of Groundnut (Arachis hypogaea L.) (저선량 감마선이 땅콩 생장에 미치는 효과)

  • 김재성;이은경;백명화;박홍숙;김광호
    • Korean Journal of Environmental Biology
    • /
    • v.17 no.3
    • /
    • pp.257-261
    • /
    • 1999
  • Effect of low dose gamma radiation on the growth of groundnut (Arachis hypognea L.) were investigated with respect to germination rate, seedling development and yield. Seeds of “Palpal” cultivar were irradiated with 0.5~20 Gy of ${\gamma}$ radiation in order to determine the hermetic effect of low dose radiation. The germination rate of ${\gamma}$-ray irradiation group was lower than that of the control but the seedling height of groundnut grown from seeds irradiated with low dose ${\gamma}$-ray was slightly higher than that of the control. The number of pod and kernels, and the seed yield increased by 27%, 17% and 19 %, respectively, in the 12.0 Gy irradiation group compared to that in the control group. The 100 seed weight was 87.2 g in the 4.0 Gy irradiation group, which was 11% heavier than 78.3 g in the control group. Low dose radiation showed an enhancement effects on the growth and yield components of groundnut.

  • PDF