• Title/Summary/Keyword: seed-gathering

Search Result 21, Processing Time 0.034 seconds

Subnet Generation Scheme based on Deep Learing for Healthcare Information Gathering (헬스케어 정보 수집을 위한 딥 러닝 기반의 서브넷 구축 기법)

  • Jeong, Yoon-Su
    • Journal of Digital Convergence
    • /
    • v.15 no.3
    • /
    • pp.221-228
    • /
    • 2017
  • With the recent development of IoT technology, medical services using IoT technology are increasing in many medical institutions providing health care services. However, as the number of IoT sensors attached to the user body increases, the healthcare information transmitted to the server becomes complicated, thereby increasing the time required for analyzing the user's healthcare information in the server. In this paper, we propose a deep learning based health care information management method to collect and process healthcare information in a server for a large amount of healthcare information delivered through a user - attached IoT device. The proposed scheme constructs a subnet according to the attribute value by assigning an attribute value to the healthcare information transmitted to the server, and extracts the association information between the subnets as a seed and groups them into a hierarchical structure. The server extracts optimized information that can improve the observation speed and accuracy of user's treatment and prescription by using deep running of grouped healthcare information. As a result of the performance evaluation, the proposed method shows that the processing speed of the medical service operated in the healthcare service model is improved by 14.1% on average and the server overhead is 6.7% lower than the conventional technique. The accuracy of healthcare information extraction was 10.1% higher than the conventional method.