• Title/Summary/Keyword: seed coat

Search Result 357, Processing Time 0.028 seconds

Variation of β-carotene Concentration in Soybean Seed and Sprout

  • Kang, Eun-Young;Kim, Eun-Hye;Chung, Ill-Min;Ahn, Joung-Kuk
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.57 no.4
    • /
    • pp.324-330
    • /
    • 2012
  • In this study, ${\beta}$-carotene concentrations was determined in soybean cultivar according to seed size, usage, seed coat color and cotyledon color as well as the process of seed germination. The total average concentration of ${\beta}$-carotene was $6.6{\mu}g/g$ in soybean seed, $33.3{\mu}g/g$ in soybean sprout. According to seed size, the total ${\beta}$-carotene concentration of soybean was $6.9{\mu}g/g$ in large soybean seed, $6.7{\mu}g/g$ in medium soybean seed, and $6.31{\mu}g/g$ in small soybean seed. In soybean sprout, the total ${\beta}$-carotene concentration was $21.4{\mu}g/g$ in large soybean sprout, $30.5{\mu}g/g$ in medium soybean sprout, and $43.5{\mu}g/g$ in small soybean sprout. According to the utilization of seed, the total ${\beta}$-carotene concentration of soybean seed was $7.2{\mu}g/g$ in cooked with rice soybean seed, $6.1{\mu}g/g$ in paste and curd soybean seed, and $6.3{\mu}g/g$ in sprout soybean seed. In soybean sprout, the total ${\beta}$-carotene concentration was $25.9{\mu}g/g$ in cooked with rice soybean sprout, $32.4{\mu}g/g$ in paste and curd soybean sprout, and $41.9{\mu}g/g$ in sprout soybean sprout. When comparison with seed coat color, the total ${\beta}$-carotene concentration of soybean with brown seed coat ($8.8{\mu}g/g$) was slightly higher than those of soybean with yellow ($6.1{\mu}g/g$). In soybean sprout, the total ${\beta}$-carotene concentration was $21.8{\mu}g/g$ in black seed coat sprout, $38.7{\mu}g/g$ in brown seed coat sprout, $34.1{\mu}g/g$ in green seed coat sprout, $39.5{\mu}g/g$ in yellow seed coat sprout, and $30.5{\mu}g/g$ in mottle seed coat sprout. The results of this study suggested the functional characteristics of soybean through quantitative analysis of ${\beta}$-carotene.

Quality Evaluation for Vegetable Use in Local Soybean Cultivars with Various Seed Coat Color

  • Lee, J. D.;Hwang, Y. H.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.43 no.2
    • /
    • pp.83-88
    • /
    • 1998
  • From the evaluation of physical properties such as springiness, gumminess, adhesiveness, chewiness and hardness by the texture analyzer, vegetable soybean lines with green seed-coat were best as compared with those with black, brown, mixed, and yellow seed-coats. A panel test evaluated on the basis of taste, sweetness, chewiness, and total scores also indicated that soybean lines with green seed-coat were the best. The total scores of panel test was decreased in the order of green > yellow> black> brown seed-coat colored soybean. The mean value of sucrose content obtained by HPLC analysis was highest in black seed-coat colored soybean, and followed by green, yellow, and brown soybeans. The highest sucrose content (8.22%) was observed in 180362, a soybean line with green seed-coat. The full-season type soybeans showed much higher sucrose content than summer types which are mainly cultivated on farmer's fields for vegetable purposes. The final 13 lines selected from 300 colored soybeans showed nearly the same panel scores as Miwongreen. However, these lines had a great deal of variation in sucrose content, and much higher readings in texture analysis than Miwongreen, especially in chewiness and hardness which were the most important properties in vegetable soybeans.

  • PDF

Colonization of Retama raetam Seeds by Fungi and Their Significance in Seed Germination

  • OUF, S.A.
    • The Korean Journal of Mycology
    • /
    • v.21 no.4
    • /
    • pp.316-322
    • /
    • 1993
  • Examination by scanning electron microscopy and potato-dextrose agar medium showed that the dry seeds of R. raetam were externally free of fungi. When planted in sandy loam soil, the seeds become colonized with eleven soilborne fungal species. The fungi were isolated on cellulose agar, pectin agar and lignin agar media. Aspergillus flavus, A. niger, Penicillium capsulatum and Fusarium oxysporum had broad occurrence and recovered on the three media. The production of hydrolytic enzymes by the isolated fungi depends on the substrate and species. P. capsulatum, P. spinulosum and A. niger had wide enzymatic amplitude and they were able to produce cellulolytic, pectolytic and lignolytic activities on corresponding substrates as well as on seed coat containing media. The lignolytic activities of the isolated species except Chaetomium bostrychods and Trichoderma viride were enhanced on applying the seed coat materials as C-source rather than using lignin. Soaking R. raetam seeds in culture filtrates of the most fungi grown on seed coat supplemented media induced pronounced and distinct stimulating effect on seed germination. The most effective filtrates were those of P. capsulatum, P. spinulosum and Sporotrichum pulverulentum.

  • PDF

Daily Dose of Apricot Kernel in Treatise on Cold Damage Diseases (상한론(傷寒論) 탕제에서 행인(杏仁) 1 일 복용량)

  • Kim, In-Rak
    • The Korea Journal of Herbology
    • /
    • v.32 no.6
    • /
    • pp.17-22
    • /
    • 2017
  • Objectives : Daily Dose of Apricot Kernel in Treatise on Cold Damage Diseases is usually written in the number, sometimes in the volume. The seed coat and acute end of Apricot Kernel must be removed, so author want to know its daily dose and proportion of seed coat and acute end. Methods : Assuming dosage by editions of Treatise on Cold Damage Diseases. And comparing it with measured weight of Apricot Kernel distributed in market. Results : The number of prescriptions including Apricot Kernel is ten, and eight of that are made to decoction, two of that are made to pill prescription. And two of decoction are made by reducing and uniting prescriptions. The daily dose of six decoction are 70, 47 or 35 in numbers. The 70 Apricot Kernel except seed coat and acute end are 1/2 Sheong ($33m{\ell}$) in volume, 3 Ryang (19.5 g) in weight. Weight of Apricot Kernel the most common in market is 0.28 ~ 0.38 g. 70 Apricot Kernel are 23.10 g, seed coats of that are 1.15 g, acute ends of that are 2.43 g, 70 Apricot Kernel except seed coat and acute end is 19.5 g. So, seed coat is 5%, acute end is 10% by proportion, which is the same with it assumed based on writings. Conclusions : 70 Apricot Kernel except seed coat and acute end are 1/2 Sheong, 3 Ryang, and it is 33 mL and 19.5 g respectively. It also correspond with current market goods.

The Effect of Seed Coat Scarification with Sodium Hypochiorite on Germination of Zoysiagrass Seed (Zoysiagrass 종자 발아에 미치는 Sodiym Hypochlorite의 종피처리 효과)

  • 구자형;김태일;원동찬
    • Asian Journal of Turfgrass Science
    • /
    • v.3 no.2
    • /
    • pp.89-94
    • /
    • 1989
  • Research was conducted to obtain t he optimum treatment Of sodium hypochlorite(NaOC I) at various temperatures in t he seed scarification for stimulating germination of zoysiagrass (Zocysia Japonica Steud ) seed. Morphological changes of seed coat were also examined by scanning electron micros cop(SEM). l. Differences in temperature of scarification with 2 .4% NaOCI showed little influence on promoting germination of seeds but seeds treated with 1% solution at l5˚C germinated less than that of higher temperatures. The promotion effect of 4% solution on germination was diminished when seeds were treated for 8 hours of more. The most favorable seed scarification unaffected hy temperature for enhancing germination was 4-6hours treatment at 4% solution in fresh seeds. 2. $GA_3$, treatment did not enhance germination of water-pretreated control seeds hut germination of seeds pretreated with NaOCI l was increased additional 10% or more hy$ GA_3$, Water pretreated control seeds treated with 50 mM hydrogen peroxide(H'O )germinated about 44%. In NaOCI treated seeds. $H_2$$O_2$ treatment increased germination additional l 0% or more. 3. NaOCI l and KOH treatment softened the seed coat and formed the pores hy removing the scab-like thikenings attached to the seed surface. These results suggest that the modes of action of NaOCl in the promotion of seed germination reside in it increase of the permeability of the seed coat, and in the provision of additional oxygen to the seed.

  • PDF

A comparison of the characteristic properties between soybean (Glycine max [L.] Merrill) seeds with different seed coat colors

  • Oh, Sung-Dug;Yeo, Yunsoo;Lee, So-Young;Suh, Sang Jae;Moon, Jung Kyung;Park, Soo-Kwon;Park, Soo-Yun
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.4
    • /
    • pp.971-980
    • /
    • 2019
  • We profiled the health-promoting bioactive components in nine types of soybean seeds with different seed coat colors (yellow, green, brown, and black) and investigated the effects of different extraction solvents (methanol, ethanol, and water) on their antioxidant activities. The carotenoid and anthocyanin compositions varied greatly by seed color, and the phenolic acids, total phenol, and total flavonoid contents differed by genotype. The carotenoid content was relatively higher in soybean seeds with green and black seed coats than in those with a yellow seed coat while lutein was the most plentiful. The anthocyanin content was considerably higher in the soybean seed with the black seed coat. The results of the DPPH assay showed strong antioxidative activities in the methanol- and water-extracts compared to the ethanol-extract, irrespective of the seed coat colors. Moreover, the soybean seeds with the black seed coat exhibited the highest antioxidant activity among the samples, regardless of the extraction solvent used. Eighteen bioactive compounds were subjected to data-mining processes including principal component analysis and hierarchical clustering analysis. Multivariate analyses showed that brown and black seeds were distinct from the yellow and green seeds in terms of the levels of carotenoids and anthocyanins, respectively. These results help our understanding of the compositional differences in the bioactive components among soybean seeds of various colors, providing valuable information for future breeding programs that seek to enhance the levels of compounds with health benefits.

Detection of Alternaria spp. in Carrot Seeds and Effect of the Fungi on Seed Germination and Seedling Growth of Carrot

  • Kim, Wan-Gyu;MatHur, Suaresh-Behari
    • The Plant Pathology Journal
    • /
    • v.22 no.1
    • /
    • pp.11-15
    • /
    • 2006
  • Five seed samples of carrot were tested to detect Alternaria spp. by blotter method. A. alternata and A. radicina were detected from all the seed samples as high as $25.8-70.5\%$ and $37.5-63.5\%$, respectively. A. dauci was detected from four seed samples as low as $0.5-7.5\%$. The three Alternaria spp. were detected from the pericarp and the seed coat and endosperm of the carrot seeds but not from the embryo by component plating test. A. alternata and A. radicina were much more detected from the pericarp than the seed coat and endosperm. A. dauci was detected from the pericarp and the seed coat and endosperm at similar rate. The seed sample which was most severely infected with A. radicina showed the lowest rate of germination in the test on top of paper (TP). In the TP test, differences in total infection rate of A. radicina and A. dauci of the seed samples were very closely correlated with those in incidence of seedling rot on the seed samples. However, there was no correlation between infection rate of A. alternata and rate of germination or seedling rot of the seed samples. Soil test for seedling growth revealed that there was no correlation between differences in total infection rate of A. radicina and A. dauci and those in rate of normal seedlings of the seed samples.

Studies on the Merclonal Protocorm of Orchild (IV) Protocorm development from seed embryo (양란의 생장점배양에 관한 연구)

  • 한창열
    • Journal of Plant Biology
    • /
    • v.13 no.1
    • /
    • pp.65-69
    • /
    • 1970
  • Several days after culture, the parts around suspensor turned brown. In about 10 days the embryo started to form protocorm sending out hairs through seed coat. Around 20 days after culture, most of the protocorms emerged out of seed coat and some of them began to take green color. When observed two months after culture, the protocorn took the characteristic top-shape feature.

  • PDF

Investigation of soybean sprout rot and the elimination of improper seeds for quality control on soybean seedlots

  • Lee, Jung Han;Kwak, Youn-Sig
    • Journal of agriculture & life science
    • /
    • v.50 no.1
    • /
    • pp.57-64
    • /
    • 2016
  • Soybean sprouts have been a considered a nutrient-rich vegetable for hundreds of years. To evaluate the seedlot quality of soybean sprouts grown, and to evaluate a method for reducing the presence of improper seeds in soybean seedlots, microbes associated with soybean sprout rot were isolated from samples collected. Morphological characteristics and gas chromatography profiles of the cultured fungal and bacterial strains were identified. Eight types of improper seeds were identified: purple stain(Ps), black rot(Br), seed coat black spot(Cb), wrinkled seed(Ws), brown hilum(Bh), seed coat fracture(Cf), unripe seed(Us), and brown seed coat(Bc). The improper seeds were also dipped into 15%, 20%, and 25% NaCl solutions, as well as a saturated solution of NaCl, for 1min. As the NaCl concentration increased, the number of floating improper seeds increased as well. The highest floating rates were observed for the Cf seeds.

Accumulation of triple recessive alleles for three antinutritional proteins in soybean with black seed coat and green cotyledon

  • Kang, Gyung Young;Choi, Sang Woo;Chae, Won Gi;Chung, Jong Il
    • Journal of Plant Biotechnology
    • /
    • v.47 no.2
    • /
    • pp.118-123
    • /
    • 2020
  • The black seed coat of soybeans contain anthocyanins which promote health. However, mature soybean seeds contain anti-nutritional factors like lipoxygenase, lectin and Kunitz Trypsin Inhibitor (KTI) proteins. Furthermore, these seeds can be used only after the genetic elimination of these proteins. Therefore, the objective of this study was to develop novel soybean genotypes with black seed coat and triple recessive alleles (lx1lx1lx2lx2lx3lx3, titilele) for lipoxygenase, lectin, and KTI proteins. From a cross of parent1 (lx1lx2lx3/lx1lx2lx3, ti/ti, Le/Le) and parent2 (lx1lx2lx3/lx1lx2lx3, Ti/Ti, le/le), 132 F2 seeds were obtained. A 3:1 segregation ratio was observed during F2 seed generation for the inheritance of lectin and KTI proteins. Between a cross of the Le and Ti genes, the observed independent inheritance ratio in the F2 seed generation was 9: 3 : 3 : 1 (69 Le_Ti_: 32 leleTi_: 22 Le_titi: 9 leletiti) (χ2=2.87, P=0.5 - 0.1). From nine F2 seeds with triple recessive alleles (lx1lx1lx2lx2lx3lx3, titilele genotype), one novel strain posessing black seed coat, and free of lipoxygenase, lectin and KTI proteins, was selected. The seed coat color of the new strain was black and the cotyledon color of the mature seed was green. The weight of 100 seeds belonging to the new strain was 35.4 g. This black soybean strain with lx1lx1lx2lx2lx3lx3, titilele genotype is a novel strain free of lipoxygenase, lectin, and KTI proteins.