• Title/Summary/Keyword: seed blower

Search Result 3, Processing Time 0.02 seconds

Development of Refining Methods in Phragmites Communis and Imperata Cylindrica seed (갈대와 띠 종자의 정선기술 개발)

  • 김석현
    • Asian Journal of Turfgrass Science
    • /
    • v.18 no.1
    • /
    • pp.29-36
    • /
    • 2004
  • The efficient refinement of seed is required to reduce the cost and labor input in artificial propagation of wild plant. This study was carried out to develop methods for collecting and refining tiny seeds from wild plants. For obtaining Phragmites communis seeds, the inflorescence was cut into small fragments using a Straw Cutter and subsequently detached pappus hairs from seed coat by Hammer Mill. The primary refined seeds were passed 1.0 mm sieve. The screened seeds were subjected to Seed Blower with wind speed of 0.25 mㆍsec-1 to collected intact and well-ripen seeds. The seeds of Imperata cylindrica were refined as follows. Inflorescences were cut using a Straw Cutter first. The pappus was removed from cut fragments using a Hammer Mill and subsequently subjected to Seed Scarifier at 500rpm for 60 sec. for further separation. The separated seeds were passed 1.0 mm screen and collected after blowing with Seed Blower of wind speed of 0.15 mㆍsec-1. When the amount of seed was too little to refine with Seed Scarifier and Blower, the procedure was slightly modified from the procedure described above. The crude seed mixture obtained from Hammer Mill step was hand-refined roughly and then immersed into cone. (95%) sulfuric acid for 2 min. and collected floating portion after dilution of sulfuric acid solution 100 times with tap water. The collected seeds were dried and passed 0.149 mm sieve. During seed refining process using mechanical or sulfuric acid treatments, a small portion of damaged seed were evolved, however, the amount was not noticeable as compared to the total amount of collected seeds. Because the germination percentages between hand-refined seeds and seeds refined by above methods were not statistically different, the developed procedures for refining tiny seed of wild plants are helpful to reduce the cost and labor input in artificial propagation of two species.

Development and Performance of a Jatropha Seed Shelling Machine Based on Seed Moisture Content

  • Aremu, A.K.;Adeniyi, A.O.;Fadele, O.K.
    • Journal of Biosystems Engineering
    • /
    • v.40 no.2
    • /
    • pp.137-144
    • /
    • 2015
  • Purpose: The high energy requirement of extraction of oil from jatropha seed and reduction of loss in oil content between whole seed and kernel of jatropha necessitate seed shelling. The purpose of this study is to develop and evaluate the performance of a jatropha seed shelling machine based on seed moisture content. Methods: A shelling machine was designed and constructed for jatropha seed. The components are frame, hopper, shelling chamber, concave, and blower with discharge units. The performance evaluation of the machine was carried out by determining parameters such as percentage of whole kernel recovered, percentage of broken kernel recovered, percentage of partially shelled seed, percentage of unshelled seed, machine capacity, machine efficiency, and shelling efficiency. All of the parameters were evaluated at five different moisture levels: 8.00%, 9.37%, 10.77%, 12.21%, and 13.68% w.b.). Results: The shelling efficiency of the machine increased with increase in seed moisture content; the percentage of whole kernel recovered and percentage of partially shelled seed decreased with increase in moisture content; and percentage of broken kernel, machine efficiency, and percentage of unshelled seed followed a sinusoidal trend with moisture content variation. Conclusion: The best operating condition for the shelling machine was at a moisture content of 8.00% w.b., at which the maximum percentage of whole kernel recovered was 23.23% at a shelling efficiency of 73.95%.

Study on Automation of Integrated Seedling Production System - Planting Device- (종합공동육묘장의 설비 자동화에 관한 연구 -파종시스템-)

  • 최창현;노광모;이규창;김재민
    • Journal of Biosystems Engineering
    • /
    • v.21 no.2
    • /
    • pp.123-133
    • /
    • 1996
  • An automatic drum seeder was developed to improve the seeding operation. It consisted of a conveyor to transfer seedling trays, a seed-hopper to supply seeds, a drum to drop seeds on the tray, and an air blower to remove extra seeds. A photo sensor was used to detect the transfer of seedling trays, and its signal was fed into microcomputer which operated a stepping motor driving the drum. The seeds were adhered to the surface of drum by vacuum pressure, and were dropped into tray cells by compressed air. An air connection unit was devised to alternate between vacuum pressure and compressed air. A control program for the system, written in C language, could operate the drum at the given number of revolutions and revolutions per minute. The results showed that the air connection unit could operate well and the seeds were dropped satisfactorily into tray cells. In case of cabbage and perilla seeds, which are regular and spherical shape, the missing rate was low and the single seeding rate was more than 97%. Low missing rate and high multiple seeding rate were observed in lettuce seeds which have narrow ends with tight weight. The missing rate of pepper seed was very high because of heavy weight and irregular shape. To improve the performance of the seeder, adjustment of vacuum pressure based upon shape and weight of the seeds, careful selection of the material of drum, maintenance of consistent air blower pressure, and replacement of stepping motor to DC motor are recommended.

  • PDF