• Title/Summary/Keyword: sedimentary sequence

Search Result 88, Processing Time 0.025 seconds

Structure and Physical Property of the Crust of Mid-west Korea: Analysis of Sedimentary Basins in the Namyang and Tando Areas, Kyeonggi Province, Korea (한반도 중서부 지각구조와 물성 연구: 경기도 화성군 남양 및 안산시 탄도지역에 분포하는 퇴적분지의 분석)

  • Park, Sung-Dae;Chung, Gong-Soo;Jeong, Ji-Gon;Kim, Won-Sa;Lee, Dong-Woo;Song, Moo-Young
    • Journal of the Korean earth science society
    • /
    • v.21 no.5
    • /
    • pp.563-582
    • /
    • 2000
  • Two Cretaceous(80-90 Ma) non-marine sedimentary basins, Namyang and Tando Basins, are distributed in the Namyang area, Hwaseonggun and in the Tando area, Ansanshi, Kyungki Province, Korea. The Namyang and Tando Basins are composed of 10 facies, which are pooped into 5 facies associations(FA). FA I consists of massive conglomerate facies, normally graded conglomerate facies and reversely graded conglomerate facies, which is interpreted to have been formed by laminated sandstone facies, massive conglomerate facies(channelized), which is thought to have been formed by sheet flow, stream flow and suspension sedimentation in an alluvial/braided plain environment. FA III consists of massive mudstone(pebbly) facies, laminated mudstone facies, massive sandstone facies and is interbedded by channel-fill conglomerate. It is interpreted to have been deposited by suspension settling during flooding and channel-fill deposition in a floodplain environment. FA IV consists of massive conglomerate facies, normally graded conglomerate facies, massive sandstone facies, normally graded sandstone facies, and laminated sandstone facies and is interbedded with mudstone facies. It is thought to have been deposited by debris flow and turbidity current in a fan-delta environment. FA V consists of massive mudstone facies, laminated mudstone facies, laminated sandstone facies and is interbedded by massive conglomerate bed. It is thought to have been formed by suspension sedimentation and low-density turbidity current in a lake. In the Namyang Basin FA I is distributed in the eastern and southern margin of the basin, FA II in the middle part of the basin as north-south tending band. and FA III in the western part. In the Tando Basin FA II is distributed in the middle part of eastern margin and in the northwestern margin, FA IV in the southwestern part, and FA V in the central part. Correlation of the facies associations shows that FA I and II in the Namyang Basin are distributed in the lower to middle part of stratigraphic sequence and FA III in the upper part of the sequence whereas FA II and IV in the Tando Basin are in the lower to middle part and FA V in the upper part of the sequence. These patterns of facies associations distribution suggest that the Namyang Basin was developed as an alluvial fan and alluvial/braided plain at first and then evolved into a floodplain whereas the Tando Basin was developed as a fan-delta and alluvial/braided plain at first and then evolved into a lake environment.

  • PDF

Origin and Characteristics of Sand Ridges in the western Continental Shelf of Korean Peninsula (한반도 서부대륙붕에 발달한 사퇴의 발생기원과 특성)

  • 방효기;이차원
    • 한국해양학회지
    • /
    • v.29 no.3
    • /
    • pp.217-227
    • /
    • 1994
  • From northeast to southwest, discontinuous sand ridges distribute on the western continental shelf of Korean Peninsular. The dimension of sand ridges is 3 to 21 m high, 3.1 to 6.8 km wavelength and 9-64 km long with 0.5 steep slope. they are probably originated and reformed by the intensity of tidal current according to the sea level rise. The characteristics of sand ridges revealed in study area are summarized as follows: (1) The sand ridges line up with the long axes of the tidal current ellipses, indicating a tidal control. (2) these are composed of two sedimentary sequences on the 3.5 kHz seismic profiles and core sediments. The upper sequence characterized by prolonged type is covered with thin veneer of massive fine sand(Mz, 2-3$\phi$) with Olive Gray(5Y 5/2). The lower sequence is characterized by internal reflector type with parallel and discontinuous. It consists of sandy mud or muddy sand(Mz, 5-7$\phi$) with laminar structures. the parallel internal reflectors are truncated on the slope of sand ridges. (3) Asymmetrical sand waves are superimposed on the sand ridges, and facing to the crest. However, symmetrical sand waves lie on the crest. Sand ridges having characteristics above is originated by scouring of tidal current, covered with coarase relict sediments, and modified by sadware.

  • PDF

Field Experiments on the Cutoff Grouting Around Waterway Tunnel (도수터널의 차수 그라우팅 현장시험)

  • 김덕근;김교원
    • The Journal of Engineering Geology
    • /
    • v.11 no.1
    • /
    • pp.81-99
    • /
    • 2001
  • In order to clarify an effect of the cutoff grouting, a series of field experiments were performed during construction of the waterway tunnel from the River Gilancheon(Andong) to the Youngcheon dam. The experiments were conducted in three different ways based on the grouting time in the construction sequence, i.e., the pre-grouting, after-grouting and consolidation grouting tests. And those were also planned to compare the efficiency of grouting in relation to the material types of grout, base rock types and other geologic factors such as discontinuities, depth and direction of grouting holes, and number of grouting stages. Among the materials of grout employed in the experiments, such as a common Portland cement, a micro-cement, a micro-cement with sodium silicate, and a urethane, the urethane was the most effective as the cutoff grouting. And for the same grout material, the pre-grouting was more effective to cutoff the water inflow comparing to the after-grouting and the consolidation grouting. For the rock types, the grouting efficiency in the sedimentary rocks as a base rock was less than the other rocks such as granite and volcanic rocks, which is believed due to the smaller separation of joints and the abundance of infilling materials in the joints developed in the sedimentary rocks. There was no direct relationship between the total RMR value of the rock mass and the grouting efficiency, however, the joint separation which is one of the RMR criteria is believed to have positive relation to the grouting efficiency. And the direction of the grouting holes might not so much affect on the grouting efficiency while increasing the number of grouting stage showed the better results.

  • PDF

Stratigraphic Sequence and Depositional Environment of Unconsolidated Deposits in the West Seacoast (서해안 미고결 지층의 퇴적이력 및 퇴적환경)

  • Lee, Yong-Mok;Choi, Eun-Kyeong;Kim, Sung-Wook;Lee, Kyu-Hwan;Yoon, Yeo-Jin;Lim, Heui-Dae
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.10
    • /
    • pp.55-68
    • /
    • 2012
  • The west seacoast has approximately 83% of tidal flat in Korea. Gyeonggi-do and Inchon has 35.1%. This study was carried out to understand depositional environment and properties of tidal deposits that distributed in the Gyeonggi bay. On the basis of observation and description on mineralogical, geochemical, physical properties, detailed sedimentary unit has been respectively distinguished Based on. stratigraphic position, facies and unconformity, the intertidal zones are classified into four sedimentary units, and bedrock over the units has been developed in the order of Unit 4${\rightarrow}$Unit 3${\rightarrow}$Unit 2${\rightarrow}$Unit 1. The intertidal sediment deposits of Gyeonggi Bay were compared with those of west coast. In Cheongra area all strata of Unit 4-Unit 3-Unit 2-Unit 1 appear. In Yeongjong-do Unit 2-Unit 1, in Incheon Bridge and Songdo area Unit 4-Unit 3-Unit 1 are observed. In Daesan area Unit 4-Unit 3-Unit 1 are observed. Average clay mineral content ratio is 8.2% in Cheongra area, 2.9% in Yeongjong Island, 18.4% in Incheon Bridge, 24.6% in Songdo area.

백악기 미국 걸프만 퇴적층의 지구조적, 퇴적학적, 석유지질학적 고찰 (A Review of Tectonic, Sedinlentologic Framework and Petroleum Geology of the Cretaceous U. S. enlf Coast Sedimentary Sequence)

  • Cheong Dae-Kyo
    • The Korean Journal of Petroleum Geology
    • /
    • v.4 no.1_2 s.5
    • /
    • pp.27-39
    • /
    • 1996
  • In the Cretaceous, the Gulf Coast Basin evolved as a marginal sag basin. Thick clastic and carbonate sequences cover the disturbed and diapirically deformed salt layer. In the Cretaceous the salinities of the Gulf Coast Basin probably matched the Holocene Persian Gulf, as is evidenced by the widespread development of supratidal anhydrite. The major Lower Cretaceous reservoir formations are the Cotton Valley, Hosston, Travis Peak siliciclastics, and Sligo, Trinity (Pine Island, Pearsall, Glen Rose), Edwards, Georgetown/Buda carbonates. Source rocks are down-dip offshore marine shales and marls, and seals are either up-dip shales, dense limestones, or evaporites. During this period, the entire Gulf Basin was a shallow sea which to the end of Cretaceous had been rimmed to the southwest by shallow marine carbonates while fine-grained terrigengus clastics were deposited on the northern and western margins of the basin. The main Upper Cretaceous reservoir groups of the Gulf Coast, which were deposited in the period of a major sea level .rise with the resulting deep water conditions, are Woodbinefruscaloosa sands, Austin chalk and carbonates, Taylor and Navarro sandstones. Source rocks are down-dip offshore shales and seals are up-dip shales. Major trap types of the Lower and Upper Cretaceous include salt-related anticlines from low relief pillows to complex salt diapirs. Growth fault structures with rollover anticlines on downthrown fault blocks are significant Gulf Coast traps. Permeability barriers, up-dip pinch-out sand bodies, and unconformity truncations also play a key role in oil exploration from the Cretaceous Gulf Coast reservoirs. The sedimentary sequences of the major Cretaceous reseuoir rocks are a good match to the regressional phases on the global sea level cuwe, suggesting that the Cretaceous Gulf Coast sedimentary stratigraphy relatively well reflects a response to eustatic sea level change throughout its history. Thus, of the three main factors controlling sedimentation (tectonic subsidence, sediment input, and eustatic sea level change) in the Gulf Coast Basin, sea-level ranks first in the period.

  • PDF

PRELIMINARY INTERPRETATION OF DEPOSITIONAL ENVIRONMENT AND GEOLOGICAL STRUCTURE OF THE JEJU BASIN IN THE SOUTH SEA OF KOREA (남해 제주분지 해역의 퇴적환경 및 지질구조 예비 해석)

  • SikHuh;DongLimChoi;HaiSooYoo;DongJuMin;JongKukHong;KwangJaLee
    • Journal of the Korean Geophysical Society
    • /
    • v.7 no.3
    • /
    • pp.225-232
    • /
    • 2004
  • To investigate the depositional environment and the geological structure of the Jeju Basin in the South Sea of Korea, we acquired 54-channel seismic data of about 1,980 line-km. The study area lies at the northeastern part of the East China Sea Trough, a Tertiary back-arc basin. The sedimentary basin formed by rifted activities resulted in the formation of graben and/or half-graben structures. The basin is composed of pre-rift, syn-rift and post-rift sediments bounded by regional unconformity. The pre-rift and syn-rift sediments consist of Oligocene, Early and Middle Miocene sequence, whereas the post-rift sediments consist of Late Miocene and Plio-Pleistocene sequences. Seismic and well data from the Jeju Basin indicate that Oligocene-Miocene sediments were deposited under fluvial and lacustrine depositional conditions. Following compressional tectonic movements in the Late Miocene time and a subsequent period of erosion, regional subsidence during the Pliocene time brought the Jeju Basin under marine conditions, resulting in the deposition of dominantly marine sediments.

  • PDF

Seismic Structure in the Northwestern Margin of the Okinawa Trough (오키나와트러프 북서 주변부의 탄성파 구조)

  • 선우돈
    • Economic and Environmental Geology
    • /
    • v.36 no.6
    • /
    • pp.491-499
    • /
    • 2003
  • The Okinawa Trough is a rift basin formed by extension. Analysis of multichannel seismic reflection profiles from the northwestern margin of the northern Okinawa Trough reveal that the trough is characterized by a series of tilted fault blocks bounded by listric normal faults and half-grabens developed between blocks, showing typical rifted structures. The trough display three kinds of sedimentary sequences with different seismic reflection characteristics: prerift, synrift and postrift sediments. The prerift sequence develops parallel to the dip direction of tilted fault blocks. The synrift sediments, mostly deposited in the half-grabens between tilted fault blocks, are generally well characterized by divergence of the reflectors towards the blocks indicating contemporaneous deposition during tilting. The postrift sediments are featured by continuous and parallel reflectors. The width of the half-graben and the throw-displacement rate of the basin bounding fault are closely connected. The throw-displacement rate is the maximum when the rifting event is the most active and the width of the half-graben is proportional to the rate.

Gas trasport and Gas hydrate distribution characteristics of Southern Hydrate Ridge: Results from ODP Leg 204

  • Lee, Young-Joo;Ryu, Byong-Jae;Kim, Ji-Hoon;Lee, Sang-Il
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.407-409
    • /
    • 2006
  • Geochemical analyses carried out on samples collected from cores on and near the southern smit of Hydrate Ridge have advanced understanding by providing a clear contrast of the two major modes of marine gas hydrate occurrence. High concentrations (15%-40% of pore space) of gas hydrate occurring at shallow depths (0-40 mbsf) on and near the southern summit are fed by gas migrating from depths of as much as 2km within the accretionary prism. This gas carries a characteristic minor component of C2-C5 thermogenic hydrocarbons that enable tracing of migration pathways and may stabilize the occurrence of some structure II gas hydrate. A structure II wet gas hydrate that is stable to greater depths and temperatures than structure I methane hydrate may account for the deeper, faint second bottom simulating reflection (BSR2) that occurs on the seaward side of the ridge. The wet gas is migrating In an ash/turbidite layer that intersects the base of gas hydrate stability on the seaward side of and directly beneath the southern summit of Hydrate Ridge. The high gas saturation (>65%) of the pore space within this layer could create a two-phase (gas + solid) system that would enable free gas to move vertically upward through the gas hydrate stability zone. Away from the summit of the ridge there is no apparent influx of the gas seeping from depth and sediments are characterized by the normal sequence of early diagenetic processes involving anaerobic oxidation of sedimentary organic matter, initially linked to the reduction of sulfate and later continued by means of carbonate reduction leading to the formation of microbial methane.

  • PDF

Petrography of the Miocene Volcanic Rocks of the Eoil Basin, Southeastern Part of Korean Peninsula (한반도 남동부 어일분지의 마이오세 화산암의 암석기재적 연구)

  • 이정현;윤성효;고정선
    • The Journal of the Petrological Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.64-80
    • /
    • 2004
  • The Miocene volcanic rocks in the Eoil Basin, which is one of the pull-apart basins in the southeastern Korean Peninsula, are bimodal in composition: felsic (67.2-70.5wt.% SiO$_2$) and mafic(49.3-55.2wt.% SiO$_2$). The bimodal volcanic activities in the basin appear to be closely associated with the basin development. The volcanic rocks are intercalated with thick Files of sedimentary sequence. They show evidence of magma mixing. which has produced mafic and felsic volcanic rocks. We are able to identify the petrographic characteristics (disequilibrium phenocryst assemblages) of the volcanic rocks that were mixed. In basaltic lava, phenocrysts of olivine and orthopyroxene coexist with corroded quartz phenocryst. Dacitic to rhyolitic welded ash-flow tuff contains phenocrysts of clinopyroxene and orthopyroxene. It suggests that phenocryst disequilibrium have been affected and mixed by magmas, which have different compositions.

The Formative Processes and Ages of Paleo-coastal Sediments in Dangjeong-ri, Seocheon-gun in the Western Coast, South Korea: Evaluation of the Mode and Strain Rate of the Late Quaternary Tectonism (III) (서해안 서천군 당정리 일대에 분포하는 육상 고해안 퇴적물의 형성 과정과 형성 시기: 한반도 제4기 후기 지각운동의 양식과 변형률 산출을 위한 연구(III))

  • Shin, Jae-Ryul;Hong, Yeong-Min;Hong, Seongchan
    • Journal of The Geomorphological Association of Korea
    • /
    • v.27 no.1
    • /
    • pp.33-45
    • /
    • 2020
  • A number of unconsolidated deposits, consisting of a layer of gravels and silt, are found in Dangjeong-ri, Seocheon-gun in the western coast. From below in the stratigraphic sequence, the gravel layer ranging up to a maximum thickness of about 2 meters is interpreted as being formed by fluvial processes of an old channel (Dangjeong S.), and the overlying silt or sandy silt layer of 2 to 3 thickness meters is assumed to be emerged paleo-tidal sediments which was deposited in low tidal-energy environments. As the results of rock surface IRSL datings, the depositional ages of gravels are confirmed as ca. 78,000 ~ 83,000 years BP, indicating that the layer was formed in response to a high-stand sea level of MIS 5a along the Dangjeongcheon estuary. It is presumed that the relative height of 4.5 meter between the altitude of the stream bed (9.5 m) and the altitude of the bedrock boundary in the gravel layer (14 m) indicates the uplift amount since deposition. Paleo-sedimentary environments and an altitude of paleo-shoreline in the study area will be discussed with additional age dating focused on the silt layer.