• 제목/요약/키워드: sedimentary sequence

검색결과 88건 처리시간 0.021초

On the Origin of Anorthosite in the Area of Hadong, Sancheong, Gyeongsang-namdo, Korea (하동일산청지역(河東一山淸地域)의 아노르도사이트의 성인(成因)에 관(關)하여)

  • Son, Chi Moo;Cheong, Ji Gon
    • Economic and Environmental Geology
    • /
    • 제5권1호
    • /
    • pp.1-20
    • /
    • 1972
  • A large anorthositic mass outcropped as mushroom-like body extending up to 46km which occurs in the Hadong kaoline district of southern Korea. The anorthositic mass is in contact with the metamorphic, plutonic and sedimentary rocks. The metamorphic rocks are of granitic gneiss and banded gneiss, etc; the plutonic rocks are of gabbroic and dioritic rocks, schistose granite, syenite, diorite and granite. The sedimentary rocks include siltstone and pebbly sandstone of Lower Gyeongsang System, Cretaceous in age. The anorthositic mass shows a gradational contact with the metamorphic and sedimentary rocks, and is cut by the plutonic rocks except gabbroic and dioritic rocks. The anorthositic mass is leucocratic in the central portion of the mass, and, in turn, grades to rock phases in which ma/ic minerals are irregularly scattered, then to the well-lineated rock and finally to the banded gneiss. Lineation of the anorthositic mass is accordant with that of the surrounding banded gneiss, and the lineation continues toward the gneiss. In some places, the rock phases in which mafics are scattered is gradational with adjacent sedimentary rocks. The anorthositic mass in contact with gabbroic and dioritic rocks shows spotted features. Various replacement features seen under the microscope and paragenetic sequence of the mineral components in the anorthositic rocks cannot be considered as the origin of magmatic crystallization. From the field and microscopic observations, it is concluded that the anorthositic mass was formed from replacement of the metamorphic rocks and plutonic rocks by the anorthositic magma.

  • PDF

Importance and Application of Ichnology (생흔학의 중요성 및 활용)

  • Kim, Jong-Kwan;Chun, Seung-Soo;Baek, Young-Sook;Chang, Eun-Kyong;Shin, Sun-Ja
    • The Korean Journal of Petroleum Geology
    • /
    • 제12권1호
    • /
    • pp.34-42
    • /
    • 2006
  • Ichnology is the study of traces made by various organisms, which includes classification and description of traces, and interpretation of sedimentary process, behavior of organism and depositional environment based on traces and organism behavior. Ichnofacies, which is defined as the association of several traces related together with substrate characteristics and sedimentary processes, is closely related to depositional environment. Ichnology has been applied to sedimentology (to understand physical characteristics of depositional environment, sedimentation pattern and event bed), sequence stratigraphy (to recognize sequence boundaries and biostratigraphic discontinuities such as MFS, TSE and RSE), oil exploration (providing of many information without big cost) and palaeocology. Preliminary ichnological study on the Ganghwa intertidal flat shows that dominant ichofacies are changing with season and location, suggesting that their seasonal variation would be a good indicator to understand the seasonal change of sedimentary processes, the small- scale change of sedimentary environment and the preservation potential of such units. Ichnology on intertidal flat in western coast of Korea has a great potential to apply its results to petroleum geology as well as sedimentology.

  • PDF

Sedimentary facies of the Cambrian Sesong Formation, Taebacksan Basin (태백산분지 캠브리아기 세송층의 퇴적상)

  • Joo, Hyun;Ryu, In-Chang
    • Economic and Environmental Geology
    • /
    • 제45권5호
    • /
    • pp.565-578
    • /
    • 2012
  • Sedimentary facies of the Middle to Upper Cambrian Sesong Formation, Taebacksan Basin, are analyzed using detailed field mapping and stratigraphic section measuring. As a result, five sedimentary facies are recognized in the formation, which include lime nodule bearing shale facies, anastomosing wackestone-packstone facies, well-laminated siltstone facies, fine to medium sandstone facies and lime pebble conglomerate facies. Together with sedimentary facies analysis, study on vertical facies variation indicates that the Sesong Formation was deposited in an outer to inner shelf during relative sea-level fall. Especially, shallow marine aspects of the upper part of the Sesong Formation including 10-m-thick, fine to medium-grained sandstones appear to be very similar with the shallow marine strata accumulated during the Steptoean Stage (Dunderbergia) in Laurentia. These lithofacies comparisons of coeval strata between two continents suggest that sedimentation in the Sesong Formation reflects the influence of global sea-level fall occurred during the late Middle Cambrian to early Late Cambrian. As well, a stratigraphic discontinuity surface that may have sequence stratigraphic significance is recognized within the shallow marine sandstone beds of the uppermost Sesong Formation. This stratigraphic discontinuity surface may correspond to the Sauk II-III sequence boundary in Laurentia. Therefore, results delineated in this study will use a new stratigraphic paradigm for regional correlation of the Middle to Late Cambrian strata (e.g., the Sesong Formation) in the Taebacksan Basin, and will provide very useful information on intercontinental stratigraphic correlation in the future.

The Depth and Configuration of The Basement at Sokotra Basin, Offshore Korea Using Marine Magnetics

  • Suh Mancheol;Abdallatif Tareq F.;Han Jungsik;Choi Sungho
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2004년도 대한지구물리학회.한국지구물리탐사학회 공동학술대회 초록집
    • /
    • pp.165-169
    • /
    • 2004
  • Marine magnetic survey were carried out at Sokotra Basin offshore Korea between latitudes $31^{\circ}$ 42'32' N and $32^{\circ}$ 46'29' N, and longitudes $123^{\circ}$ 56'26" E and $125^{\circ}$ 49'16" E in order to estimate the depth of basement complex and as well as to configure it surface and produce the thickness of sedimentary sequence at the study area. Two methods have been used for depth estimation and basement configuration: the power spectrum and the 3-D analytical signal. The estimated depths resulted from the power spectrum method range from 1.4 km to 6.0 km for deep sources (basement troughs), and from 0.3 km to 1.75 km for shallow source (basement peaks). An isopach map was prepared for estimating the thickness of the sedimentary sequence at the study area; it ranges from 1.2 to 4.66 km. The estimated depths resulted from the analytic signal method range from 1.0 to 6 km. A basement configuration map was constructed for the study area in the basin. They show a well agreement with the geology of the study area.

  • PDF

Sedimentological Study of the Nakdong Formation to analyse the Forming and Evolving Tectonics of the Cretaceous Gyeongsang Basin, I: Depositional Setting, Source, and Paleocurrent Analyses of the Nakdong Formation in the Southwestern Gyeongsang Basin (백악기 경상분지의 생성 및 진화에 관여한 지구조운동의 분석과 최하부 낙동층에 대한 퇴적학적 연구 I: 경상분지 서남단 낙동층의 퇴적환경과 기원암, 고수류 분석)

  • Cheong, Dae-Kyo;Kim, Yong-In
    • Economic and Environmental Geology
    • /
    • 제29권5호
    • /
    • pp.639-660
    • /
    • 1996
  • The lowest formation of the Cretaceous Gyeongsang Supergroup, the Nakdong Formation, unconformably overlies the gneiss complex basement in Hadong, Gyeongsangnam-do and Gwangyang, Chullanam-do. The Nakdong Formation of the study area is 500-600 m thick and occurs as a belt shape. Based upon lithology, sedimentary structure, and bedding geometry the formation consists of three conglomerate facies (Gd, Gn, Gic), five sandstone facies (Sh-n, Sh-i, Sp, Sr, Sm), and four mudstone facies (Mf, Mfn, Mc, Mv). Sandstone facies are the most prominent in the study area. The twelve facies can be grouped into five facies associations. The depositional settings are elucidated from analyses of 12 facies and five facies associations of the formation. The lower part of the Nakdong Formation was deposited in alluvial plain, and the middle and upper parts were in a riverine system. The lithologies of the Nakdong Formation of the Gyeongsang Basin have been considered to consist of generally conglomerates and pebbly sandstones that were accumulated in alluvial fans. But the common lithology of the study area is sandstone which was formed in lower part of alluvial fan or fluvial setting. It is supposed that the coarser sedimentary sequence distributed west to the study area should be eroded out after deposition and early uplift, and the finer sandstone sequence in the east remains behind. The mineral composition of sandstones and the clast composition of conglomerates indicate that the Nakdong Formation was derived mainly from the metamorphic source rocks. Some reworked intraclasts were also supplied from the intrabasinal sedimentary layers. Paleocurrent data collected from cross-beddings, ripple marks, asymmetric sand dune suggest that most sediments were transported from north to south during the Nakdong Formation time.

  • PDF

Evolution and Mineralizations in the Ockcheon Geosynclinal Zone (옥천지향사대(沃川地向斜帶)의 진화(進化)와 광화작용(鑛化作用))

  • Yun, Suckew
    • Economic and Environmental Geology
    • /
    • 제4권2호
    • /
    • pp.77-90
    • /
    • 1971
  • About four hundred deposits of iron, talc, fluorite, tungsten, molybdenum, lead, zinc and other polymetallic mineral deposits were plotted on the Ore Distribution Map of the Ockcheon Geosynclinal Area. These mineral deposits plotted on the map can be divided into the several metallogenic zones by the consideration of their geologic background including the sedimentary and tectonic cycles and the igneous activities in the geosynclinal evolution, as follows: a. Chungju iron and talc zones. b. Cheong-san copper bearing iron sulphide zone c. Kumsan-Muju fluorite-polymetallic zones. d. Cheong-an Puyong and Ein Suckseong gold zone e. Hwang-gan Seolcheon and Sangju gold zones. Chungju iron zone originated in the iron bed in the Kemyongsan Series corresponding to the Pre-Ockcheon Cycle of evolution history. In early period of the Ockcheon Cycle, Hyangsanri quartzite and Munjuri phyllitic formation corresponding to the lower terrigenous sequence were not mineralized while the next sequence of the Samsungsan basic igneous-metamorphic formation and the Changri limestone formation were mineralized by the copper bearing iron sulphide and the fluorite-polymetallic deposits respectively. Two generations of the gold zones are recognized. The earlier generation distributes directionaly in the outside of the Ockcheon sedimentary belt was followed by the earlier grantitic invasion of Jurasic in age, while the later generation scatters at random which was related to the nondirectional Cretaceous granitic intrusion of the Post-Ockcheon Cycle. Conclusively speaking, it was disclosed that the endogenic mineralization in the Ockcheon geosyn clinal zone was not conspicuous in its inner sedimentary belt except its limestone area but in its outer peripheral granitic or gneissic zones, and the related igneous activities occured in the Post-Ockcheon Cycle of evolution history.

  • PDF

Study of Sedimentary Deposits using High Resolution Seismic data in Suyeong Bay, Busan (고해상도 탄성파 자료를 이용한 부산 수영만의 퇴적층서 연구)

  • Seo, Young-Kyo;Lee, Gwang-Soo;Kim, Dae-Choul;Lee, Hi-Il
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • 제14권2호
    • /
    • pp.81-92
    • /
    • 2011
  • High resolution seismic profiles (chirp and sparker system) were analyzed for the interpretation of nearshore sedimentary environments of Suyeong Bay, Busan. The sedimentary sequence is classified into three seismic units (SU1a, SU1b, and SU2), overlying acoustic basement, and each units can be defined as erosional and disconformable strata. The lowermost SU1a is characterized by the acoustically parallel and prolonged inner reflections, compared with the upper SU1b displays irregular internal reflectors. The uppermost unit, SU2, is acoustically transparent. The acoustic basement is incised with channels, probably due to the active erosion during the early period of transgression. The acoustic basement deepens eastward in the study area, suggesting primary association with the Suyeong River. The upper SU1a and SU1b units constitute lowland-fill strata. SU2 is widely distributed over the study area. High resolution seismic profiles of Suyeong Bay provide significant information crucial to the interpretation of sedimentary environmental history, which is closely related to the sea level change, estuarine environment and influx of terrestrial sediments from the adjacent rivers.

Sedimentary Petrology and Depositional Environments of the Sindong Group in the Euiseong Subbasin (의성소익지(義城小益地) 신동층군(新洞層群)의 퇴적암석학(堆積岩石學) 및 퇴적환경(堆積環境))

  • Lee, Kwang-Choon
    • Economic and Environmental Geology
    • /
    • 제18권3호
    • /
    • pp.289-299
    • /
    • 1985
  • Sedimentary petrology and depositional environments of the Sindong Group, consisting of in ascending order the Nagdong, Hasandong and Jinju Formations, in the Euiseong Subbasin are studied. For these, the Sindong sequence over 1,000m thick is measured at the scale of 1:200 and 36 thin sections of sandstones of the Hasandong Formation are studied under the polarizing microscope. In addition, published paleontologic data are incorporated in the sedimentologic interpretation. Most of the sandstones are classified as arkose. They are moderately sorted, near symmetrical to fine skewed and mesokurtic. Relationship between the textural parameters suggests a fluviatile environment of the Hasandong Formation. The Sindong fauna and flora also indicate non-marine depositional environments. Sedimentologic data of the measured sections show that the Sindong Group is made up of from the bottom an alluvial fan (lower part of the Nagdong Formation), a fluvial plain (upper part of the Nagdong Formation and the Hasandong Formation) and a fluvial/lacustrine (the Jinju Formation) deposits.

  • PDF

Practical Aspects of Seismic Sequence Stratigraphy (Applications to Hydrocarbon Exploration/Production)

  • Baik, Ho
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2009년도 특별 심포지엄
    • /
    • pp.27-34
    • /
    • 2009
  • Since the late 1980s, the sequence stratigraphic method has become a critical tool for hydrocarbon exploration/development projects in many frontier and mature sedimentary basins. The successful application of this method with high resolution 3D seismic data and well data is particularly important in frontier and deepwater areas, where exploration risk and capital commitment are high. Many international major and national oil companies have been using sequence stratigraphic approach as one of the main interpretation tools for the evaluation of their high impact projects. Applied correctly, this integrated interpretation method is a powerful tool that can be used to unravel the complex stratigraphy of a given basin and to dramatically increase overall understanding of various depositional models for both siliciclastic and carbonate systems.

  • PDF

Paleomagnetic Study on the Volcanic and Sedimentary Rocks of Jeju Island (제주도(濟州道)에 분포(分布)하는 화산암류(火山岩類) 및 퇴적암류(堆積岩類)에 대(對)한 고지자기(高地磁氣) 연구(硏究))

  • Min, Kyung Duck;Won, Joong Sun;Hwang, Suk Yeon
    • Economic and Environmental Geology
    • /
    • 제19권2호
    • /
    • pp.153-163
    • /
    • 1986
  • Paleomagnetic and geological studies of volcanic and sedimentary rocks of Jeju Island have been carried out to determine the position of virtual geomagnetic pole(VGP), and to estimate the geological sequence and their age. As a result of paleomagnetic studies, the reversal polarities are measured in the Sanbangsan trachyte and Hwasun formation, and the normal are the rest. In case of normal polarity, the mean values of declination and inclination are $2.3^{\circ}$ and $48.4^{\circ}$, respectively, and the average value of VGP is $85.4^{\circ}N$ and $79.9^{\circ}W$. The locations of VGP's are coincident with those obtained from world-wide Plio-Pleistocene rocks. The Hwasun formation and Seongsan formation which have been known to be sedimented in the similar time in the 2nd-stage of volcanic eruption, possess reversal and normal polarities, respectively. This fact brings about the result that two formations should be separated in a sense of geological sequence. Consequently, the geological sequence of the 2nd-stage of volcanic eruption is Pyoseonri basalt-Seoguipo hawaiite-Hwasun formation-Seongsan formation-Jungmun hawaiite-Sanbangsan trachyte. Referring to the paleomagnetic studies and the previous and present geological studies, Seoguipo formation corresponds to the Gauss normal epoch, the 2nd-stage of volcanic eruption to Matuyama reversed epoch, and the 3rd-, 4th-, and 5th-stages to Brunhes normal epoch. Therefore, the Seoguipo formation is mostly sedimented during late Pliocene and/or presumably extended to the early Pleistocene. The rocks of the 2nd- to 5th-stage are formed later than this.

  • PDF