• Title/Summary/Keyword: sedimentary environment

Search Result 335, Processing Time 0.035 seconds

Gugokri-Nongdari Sedimentary Succession and Environment in the Southwestern Eumsung Basin (Cretaceous), Korea (백악기 음성분지 남서부의 구곡리-농다리 퇴적층과 퇴적환경)

  • Ryang, Woo-Hun
    • Journal of the Korean earth science society
    • /
    • v.39 no.6
    • /
    • pp.545-554
    • /
    • 2018
  • The Cretaceous Eumsung (Eumseong) Basin is a pull-apart basin, formed along a series of the Gongju strike-slip faults trending NE-SW. The Nongdari-Meer forest of the Gugokri area in the southwestern part of the basin is comprised of thick purple mudstone, intercalating conglomerate, pebbly sandstone, and green mudstone beds. The succession mainly consists of seven sedimentary facies: stratified conglomerate (C2), conglomerate encased in siltstone (CE), stratified pebbly sandstone encased in siltstone (PSE2), purple sandy siltstone (Zp), green sandy siltstone (Zg), purple mudstone (Mp), and green mudstone (Mg). Sedimentary environment is mainly indicative of alluvial-plain setting in an alluvial-to-lacustrine sedimentary system, developed in the southwestern part of the basin. Geological survey was fulfilled in succession of the Gugokri sedimentary system using 1:5000 topographic map, which resulted in a geological route map. This study newly suggested that there be fluvial systems showing ENE and NNE trends in the study area, based on data of palaeocurrent direction and sedimentary characteristics in new outcrops of the forest. The study also revised the precedent sedimentation model of the Gugokri system.

The Properties of Pusan Clay : Soil and Mineralogy of Clay Sediments in Noksan Area, Nakdong River Estuary (부산점토의 특성 : 녹산지역 점토 퇴적물의 광물조성과 토질)

  • 이선갑;김성욱;황진연;정성교
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.741-746
    • /
    • 2003
  • The foundation of Noksan area is composed of consolidified sediments including clay mineral, quartz, plagioclase and calcite. The mineral compositions vary dependent on the depth. That is, at the depth of 0-15 meters quartz and plagioclase are more abundant than clay mineral, at the depth of 17-39 meters clay minerals and calcite are more than quartz and plagioclase, at the depth deeper than 40 meters, the amounts of quartz and plagioclase increase slightly and that of clay minerals decrease. Clay minerals of the clayey sediments include illite, smectite, kaolinite and chlorite. At the depth 17-39 meters smectite is abundant and kaolinite is little relatively The pH of suspension is various between 3-9 and decrease to 3-5 at the depth deeper than 40 meters. The result of soil test of clay sediments, water content shows that liquid limit, plastic limit, particle size, unconfined compressive strength varies depending on the depth. The variation of mineralogical, geochemical, engineering properties of soil with the depth are probably due the differing sediments of different sedimentary environment. That is, these variations are considered to be correlated with the sedimentary environment change resulting from the change from continental environment to ocean environment due to the transgression of the interglacial period after the regression the latest glacial period.

  • PDF

Sedimentary Environment and Sequence Study using High Resolution Seismic Survey in Gyunggi Bay, the Yellow Sea (서해 경기만에서의 고해상도 탄성파 탐사를 이용한 퇴적환경 및 퇴적층서 연구)

  • Lee, Gwang-Soo;Kim, Dae-Choul;Seo, Young-Kyo;Yi, Hi-Il;Yoo, Shin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.42 no.6
    • /
    • pp.683-694
    • /
    • 2009
  • High-resolution (Chirp and Sparker system) seismic profiles were analyzed to investigate the sedimentary sequence and distribution pattern of the late Holocene deposits in Gyunggi Bay, the Yellow Sea. The bay is located in the western part of Korea, east of the Yellow Sea. The sedimentary sequence divided into three units bounded by erosional bounding surface: (1) acoustically parallel to subparallel reflectors with cross bedding structures (Unit 1); (2) confused inner reflectors and top of unit exposed partially at the seafloor (Unit 2); and (3) approximately parallel reflections and regressive to transgressive incision-fills (Unit 3). On the basis of seafloor morphology, surface bedforms, and subbotom acoustic characters, echo types in the study area were identified following the schemes of Chough et al. (2002); (1) flat seafloor with sharp bottom echoes (echo types 1-1, 1-2 and 1-3; transgressive sediment sheets or relict sands), (2) mounded seafloor with either smooth surface or superposed bedforms (echo types 2-1 and 2-2; tidal ridges), and (3) various-scale eroded seafloor (echo types 3-1 and 3-2; channels). Suspect features of acoustic turbid zones which is related to gas charged sediment are reported.

Importance and Application of Ichnology (생흔학의 중요성 및 활용)

  • Kim, Jong-Kwan;Chun, Seung-Soo;Baek, Young-Sook;Chang, Eun-Kyong;Shin, Sun-Ja
    • The Korean Journal of Petroleum Geology
    • /
    • v.12 no.1
    • /
    • pp.34-42
    • /
    • 2006
  • Ichnology is the study of traces made by various organisms, which includes classification and description of traces, and interpretation of sedimentary process, behavior of organism and depositional environment based on traces and organism behavior. Ichnofacies, which is defined as the association of several traces related together with substrate characteristics and sedimentary processes, is closely related to depositional environment. Ichnology has been applied to sedimentology (to understand physical characteristics of depositional environment, sedimentation pattern and event bed), sequence stratigraphy (to recognize sequence boundaries and biostratigraphic discontinuities such as MFS, TSE and RSE), oil exploration (providing of many information without big cost) and palaeocology. Preliminary ichnological study on the Ganghwa intertidal flat shows that dominant ichofacies are changing with season and location, suggesting that their seasonal variation would be a good indicator to understand the seasonal change of sedimentary processes, the small- scale change of sedimentary environment and the preservation potential of such units. Ichnology on intertidal flat in western coast of Korea has a great potential to apply its results to petroleum geology as well as sedimentology.

  • PDF

Radon Concentrations in Groundwater of the Goesan Area, Korea (괴산지역 지하수의 라돈 함량)

  • Cho, Byong-Wook
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.5
    • /
    • pp.63-70
    • /
    • 2017
  • Radon concentrations were measured in 250 groundwater samples collected from the Goesan area where uraniferous black slate and granites abundantly occur in the formations. The measured radon levels ranged from 0.90 to 7,218.7 Bq/L with the median value of 54.3 Bq/L, similar to the value measured in the nationwide survey in 4,853 wells (52.1 Bq/L). The median value was highest in the Cretaceous granite area (390.0 Bq/L) while it was as low as 20.0~58.8 Bq/L in the Ogcheon meta-sedimentary rock areas. About 23.6% of the total samples exceeded the WHO guideline value of 100 Bq/L established in 2011. The exceeding rate was 69.0, 39.4, and 7.0~13.7% in the Cretaceous granite area, Jurassic granite area, and Ogcheon meta-sedimentary rock areas, respectively.

Distribution Characteristics of Quaternary Geology and Aggregate Resources in Geumsan-gun, Chungcheongnam-do (충청남도 금산군 일대 제4기 지질 및 골재자원 분포 특성)

  • Kim, Jin Cheul;Kim, Ju Yong;Lee, Jin-Young
    • Economic and Environmental Geology
    • /
    • v.54 no.5
    • /
    • pp.595-603
    • /
    • 2021
  • Sand layer distribution, which is the main target of river and land aggregate resources, mainly belongs to alluvial and river sedimentary environments among the Quaternary sedimentary environments. The distribution of aggregate resources in the area of Geumsan-gun, Chungcheongnam-do is characteristically developed around a sedimentation environment in which intrusive meandering river dominate. Although the area around Bonhwangcheon Stream and the area near the confluence of small streams are small, the river floodplain develops and corresponds to the aggregate distribution area. The sedimentary layer formed in the sedimentary environment such as colluvial deposits or alluvial fan deposits has a relatively low distribution rate of aggregate resources. The vertical distribution of the Quaternary sedimentary layers in the Geumsan-gun region ranges from about 5 to 12 m and has an average Quaternary sedimentary thickness of 8 m. The aggregate-bearing section has an average thickness of 3.6 m, and the average grain size is about 21% clay-silt, 67% sand, and 12% gravel. The main characteristics of the aggregate-bearing section are that coarse-grained sand predominates, and gravel is sub-angular or sub-rounded, and the sorting is generally poor and has a massive form of deposits, and the soil colour ranges from dark grey to yellowish-brown. In Geumsan-gun, the most likely distribution area for aggregate development is the alluvial sedimentary and river sedimentary layers distributed along the current and former riverbeds of the main Geumgang River, Bonhwangcheon and small River tributaries.

CHANGE DETECTION OF LAND COVER ENVIRONMENT IN THE HAMPYEONG-BAY, KOREA USING LANDSAT DATA

  • Lee Hong-Jin;Chi Kwang-Hoon;Jang Se-Won
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.402-402
    • /
    • 2005
  • The purpose of this study is to analyze the land cover environment changes of tidal flat in the Hampyeong Bay. Especially, it centers on the changes in the sedimentary environment using remote sensing data. Multi-temporal Landsat data (Path-Row: 116-034) were used in this study. Remote sensing data can be effectively applied for quantitative analysis of geological environment changes in the Hampyeong-bay.

  • PDF

Weathering of coal and kerogen : implications on the geochmical carbon and oxygen cycle and the environmental geochemical reactions (탄질 유기물과 케로젠의 풍화 : 탄소와 산소의 지화학적 순환 및 환경화학적 반응에 미치는 영향)

  • 장수범
    • Economic and Environmental Geology
    • /
    • v.32 no.1
    • /
    • pp.101-111
    • /
    • 1999
  • Sedimentary organic matter, exposed to continental surficial environment, reacts with oxygen supplied from the atmosphee and forms carbon-containing oxidation products. Knowledge of the rate and mechanisms of sedimentary organic matter weathering is important because it is one of the major controls on atmospheric oxygen level through geologic time. Under the abiological conditions, the oxidation rate of coal organic matter by molecular oxygen is enhanced by the increase of oxygen concentration and temperature. At ambient temperature and pressure, aqueous coal oxidation results in the formation of dissolved $CO_2$ dissolved organic carbon and solid oxidation products which are all quantitatively significant reaction products. The effects of pH, ultraviolet light, and microbial activity on the weathering of sedimentary organic matter are poorly contrained. Based on the results of geochmical and environmental studies, it is believed that the photochemical reaction should play an important role in the decomposition and oxidation of sedimentary organic matter removed from the weathering profile. At higher pH conditions, the production rate of DOC can be accelerated due to base catalysis. These high molecular weight oranic matter can react with man-made pollutants such as heavy metal ions via adsorption/desorption or ion exchange reactions. The effect of microbial activity on the oxidative weathering of sedimentary organic matter is poorly understood and remains to be studied.

  • PDF

Late Pleistocene Fluvial Sequence in South Korea

  • Kim, Ju-Yong;Yang, Dong-Yoon;Nahm, Wook-Hyun;Lee, Yung-Jo;Park, Ji-Hoon
    • The Korean Journal of Quaternary Research
    • /
    • v.18 no.2 s.23
    • /
    • pp.33-42
    • /
    • 2004
  • In South Korea a Pedo-sedimentary Sequence(PS) indicating the Last Glacial Maximun(LGM) is typified y a brown to dark brown, relatively stiff paleosol layers formed by repetitive freezing and thawing processes which in turn left characteristi glossic textures in soil-solum, polygolnal structures with a flagipans, vertical soil wedges or freezing cracks, and horizontal foliations, As a pre-LGM sedimentary sequences (older than 25Ka), the Old Fluvial Sequence(OFS) overlain by the Slope Sedimentary Sequence(SS) are distributed commonly at the base level higher than 14-15m above present river-bed along the major river basin. After the LGM (ca. 18Ka), the Young Fluvial Sequence(YFS) appears at an altitude ascending order of sedimentary profiles. In this fluvial organic muds of Jangheungri site(Jinju), Sorori site(Cheonwon), and Youngsan estruarine rivermouth(Mokpo) were exemplified in order to interpret their formation ages and environments. As result of $^{14}C$ datings, the formation ages of te organic muds are Boelling to Alleroed (MIS-1). These organic muds were fomed in fluvial backswamp or local pond/bog in response to shifting fluvial system. On the basis of palynological production dominant with Abies/Picea-Betula and Ranunculaceae, Compositae, Cyperaceae, and Graminae, it was interpreted that more boreal to subboreal condition was prevailed rather than temperate like today during the formation of organic muds and soil moisture condition was a repetition of wet and dry condition.

  • PDF

Stratigraphical and Sedimentological Studies on Core Sediments from the Southwestern Ulleung Basin, East Sea (울릉분지 남서부 해역의 천부퇴적물에 대한 층서$\cdot$퇴적학적 연구)

  • 박명호;류병재;김일수;정태진;이영주;유강민
    • Economic and Environmental Geology
    • /
    • v.35 no.2
    • /
    • pp.171-177
    • /
    • 2002
  • Two piston-core sediments, obtained from the southwestern margin of the Ulleung Basin in East Sea, are analyzed to investigate the stratigraphy and sedimentary environment of the Late Quaternary. The cores consist mainly of cuddy sediments with silty sands, lapilli tephra and ash layers. The chronostratigraphic correlation with known eruption ages reveals that the core sediments contain the stratigraphic document over the past 46.1 kyr and the sedimentation rates during the last glacial period were relatively higher (12.1-14.9 cm/kyr) than those in pelagic ocean. Several sedimentary facies, mainly affected by turbidity currents, are commonly present in the core interval accumulated during the oxygen-isotope stage 2. Many of horizontal voids, which are thought to have formed by gas expansion, are observed in fore 00GHP-07. The total organic carbon (TOC) contents of the core sediments are noticeably high (average 1 .8%). Particularly, these TOC valuers increased during Termination I, suggesting that dering this time interval the sedimentary environment of the study area was changed to more anoxic.