• Title/Summary/Keyword: sediment transportation

Search Result 84, Processing Time 0.026 seconds

Comparative Analysis by Soil Loss and Sediment Yield Analysis Calculation Method of River using RUSLE and GRID (RUSLE와 GRID를 이용한 하천의 토양유실량 및 유사유출량 산정방법별 비교분석)

  • Park, Eui-Jung;Kim, Chul
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.10 no.2
    • /
    • pp.112-121
    • /
    • 2007
  • In occasion of soil loss happened in a basin, soil in the near of a stream may flow into the stream easily, but in case that soil is far away from the stream, sediment yield transferred to rivers by rainfall diminishes. To forecast sediment yield of a stream is an essential item for management of basins and streams. Therefore, sediment yield of soil loss produced from a basin is needed to be calculated as accurate as possible. Purpose of the present research is to calculate soil erosion amount in a basin and to forecast sediment yield flowed into a stream by rainfall and analyze sediment yield in the stream. There are various methods that analyze sediment yield of rivers. In the present study, the soil erosion amount was calculated using Revised Universal Soil Loss Equation(RUSLE) and GRID, and sediment yield was calculated using sediment delivery ratio and empirical methods. DEM data, slope of basin, soil map and landuse constructed by GIS were used for input data of RUSLE. The upstream area of the Yeongsan river basin in Gwangju metropolitan city was selected for the study area. Three methods according to the calculation of LS factor were applied to estimate the soil erosion amount. Two sediment delivery ratio methods for the respective methods were applied and, correspondingly, six occasions in sediment yield were calculated. In addition, the above results were compared by relative amount with estimation by the empirical method of Ministry of Construction & Transportation. Sediment yield calculated in the present study may be utilized for the plan, design and management of dams and channels, and evaluation of disaster impact.

  • PDF

Numerical Analysis of the Behavior of Bars in a Compound Channel with a Drop Structure (낙차공이 있는 복단면 수로에서 사주거동의 수치분석)

  • Kim, Gi-Jung;Jang, Chang-Lae
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.1
    • /
    • pp.14-21
    • /
    • 2016
  • This study investigated the behavior of sediment bars in a compound channel with a drop structure. Flow was separated into side banks by alternate bars, and flow was concentrated into the downstream of bar fronts. The bed downstream of a drop structure degradated due to the concentrated flow from it. Bar shapes were kept by the influence of their shapes upstream. Alternate bars, central bars, and multiple bars were developed as the width to depth ratio increased, and the number of bars increased. The bar in the downstream of a drop structure decreased in length due to the concentration of flow and its disturbance.

Numerical analysis of the morphological changes by sediment supply at the downstream channel of Youngju dam (댐 하류하천에서 유사공급에 의한 하도의 지형변화 수치모의 분석(영주댐을 중심으로))

  • Kang, Ki-Ho;Jang, Chnag-Lae;Lee, Gi Ha;Jung, Kwansue
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.8
    • /
    • pp.693-705
    • /
    • 2016
  • In this study, the effects of sediment supply on the downstream of a large dam are investigated using a numerical model. The model simulation shows a good agreement with laboratory experiment results of sediment transport and diffusion from sediment pulses. The water surface changes from the various sediment bed elevations are also simulated using the model. The site which has a relatively stiff bed slope and meandering of a channel is selected as an appropriate location for sediment supply because of its shear stress enough to supply the sediment downstream. The model simulation shows the decrease of channel bed elevation through the simulation period with time. The well-deposition of sediment supplied from the downstream of dam is found in the location where the flow rate is relatively low. A bed relief index is increased with time and it is relatively greater in downstream compared to upstream. The channel bed variability increases as flow rate increases with a greater bed relief index. The results of this study demonstrate the importance of increasing water discharge of a large dam to increase the dynamic of channel bed and thus to enhance the efficiency of channel bed restoration by sediment supply.

Variations in Accumulation of Terrigenous and Biogenic Materials in the Northwest Pacific Ocean since the Last Interglacial Period

  • Hyun, Sang-Min;Taira, Asahiko;Ahagon, Naokazu;Han, Sang-Joon
    • Journal of the korean society of oceanography
    • /
    • v.33 no.3
    • /
    • pp.80-89
    • /
    • 1998
  • Three cores were taken from the northwest Pacific Ocean (Shikoku Basin) to determine the accumulation rates of both biogenic and terrigeneous fractions since the last penultimate interglacial period. The sediment is characterized by large amounts of terrigenous materials with low biogenic fractions and intermittent volcanic-ash layers, suggesting a hemipelagic origin. Composition of major elements shows no significant differences among sites. Relatively small variation of TiO$_2$/Al$_2$O$_3$ ratios with respect to SiO$_2$ content is the strong evidence for the common origin of terrigenous materials. The fraction of biogenic carbonates varies from near 0% in ash layers to about 35%, with a gradual increase toward the south (St. 4 through St. 6 to St. 20). However, carbonate contents show step-wise increasing tendency from St. 4 through St. 6 to St. 20, which suggests a southward increase of carbonate production. The color reflectance indicates that the sediment of the southern sites contains relatively higher amounts of biogenic carbonates. The mass accumulation rate of terrigenous fractions during the glacial period was 2-3 times higher than that of interglacial period. This enhanced mass accumulation rate of terrigenous materials was concomitant with the high accumulation rate of biogenic fractions. The total sediment accumulation rate is considered as the most important factor controlling mass accumulation rates of the biogenic and terrigenous materials. The enhanced sediment accumulation during the glacial periods is interpreted as a consequence of climate-induced change in the supply of eolian dust from the Asian continent. Enhanced wind strength during the glacial time may have increased transportation of terrigenous materials to the ocean. Thus, variation of sediment accumulation is highly linked with climatic variations.

  • PDF

The Records of Origin and Transport of Sediments From the Past to the Present in the Yellow Sea

  • Yi, Hi-Il;Chun, Jong-Hwa;Shin, Im-C.;Shin, Dong-Hyeok;Jou, Hyeong-Tae
    • Journal of the korean society of oceanography
    • /
    • v.39 no.1
    • /
    • pp.96-106
    • /
    • 2004
  • A total of 116 surface sediment samples were obtained on the Yellow Sea and analyzed for grain size and geochemical elements in order to interpret the present sediment transportation. Thirty-nine cores and 3,070 line-km shallow seismic profiles are analyzed for sedimentary records of Yellow Sea in the past. Results show that the boundary of sediment transport between Korean side and Chinese side is about between $123^{\circ}E$ and $124^{\circ}E$. The similar result is produced from Shi et al. (in this publication). Two cyclonic patterns of surface sediments are recognized in the northeastern and southwestern Yellow Sea, while the strong front zone of the mud patch and sandy sediments are found in the southeastern Yellow Sea (the southwestern part of Korean coasts). The formation of fine-particle sediment packages, called for Northwest Mudbelt Deposit (NWMD), Hucksan Mudbelt Deposit (HSMD) and Jeju Mudbelt Deposit (JJMD), are resulted from eddies (gyres) of water circulations in the Yellow Sea. NWMD has been formed by cyclonic (anticlockwise) eddy. NWMD is composed of thick, homogeneous, relatively semi-consolidated gray clay-dominated deposit. On the other hand, HSMD and JJMD are formed by anticyclonic (clockwise) eddies. They are thick, homogeneous, organic-rich gray, silt-dominated deposit. Both core and surface sediments show that the middle zone across Chinese and Korean side contains bimodal frequency of grain-size distribution, indicating that two different transport mechanisms exist. These mud packages are surrounded by sand deposits from both Korea and China seas, indicating that Yellow Sea, which is the shallow sea and epicontinental shelf, is formed mostly by sand deposits including relict sands. The seismic profiles show such as small erosional/non-depositional channels, sand-ridges and sand-waves, Pleistocene-channelfilled deposits, a series of channels in the N-S major channel system, and thick Holocene sediment package, indicating that more complex sedimentary history exists in the Yellow Sea.

Prediction of Reservoir Sedimentation Patterns Using a Two-Dimensional Transport Model (2차원 유사운송모형을 이용한 저수지 퇴적분포유형의 추정)

  • 이봉훈;박창헌;박승우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.1
    • /
    • pp.50-58
    • /
    • 1993
  • The sedimentation patterns at a reservoir, important to the reservoir capacity curve were simulated using a depth averaged, two-dimensional sediment transport model, that is capable of depicting velocity distributions and sediment transportation. The Banweol reservoir, whose stage capacity relationships have been surveyed before and after the construction, was selected and the daily inflow rates and stages were simulated using a reservoir operation model(DI-ROM). The applicability of the transport model was tested from the comparisons of simulated sedimentation patterns to the surveyed results. The simulated inflow rates and water level fluctuations at the reservoir during twenty-one years from 1966 to 1986, showed that water levels exceeding 80 percent of the total capacity occurred for 70 percent of the periods and inflow rates less than 5000rn$^3$/day sustained for 54 percent of the spans. Dorminant flow directions were simulated from two streamflow inlets to the dam site. And simulated sediment concentrations were higher near the inlets and lower at the inside of the reservoir. Sediment was deposited heavily near the inlets, and portions of sediments were distributed along the flow paths within the reservoir. The comparisons between the simulation results and the surveyed depositions were partially matched. However, it was not possible to compare two results at the upper parts of the reservoir where dredging was carried out few times for the purpose of reservoir maintenance. This study demonstrates that sedimentation patterns within the reservoir are closely related to incoming sediment and flow rates, water level fluctuations, and flow circulation within the reservoir.

  • PDF

A Geochemical Boundary in the East Sea (Sea of Japan): Implications for the Paleoclimatic Record

  • Han, Sang-Joon;Hyun, Sang-Min;Huh, Sik;Chun, Jong-Hwa
    • Ocean and Polar Research
    • /
    • v.24 no.2
    • /
    • pp.167-175
    • /
    • 2002
  • Sediment from six piston cores from the East Sea (Sea of Japan) was analyzed for evidence of paleoceanographic changes and paleoclimatic variation. A distinct geochemical boundary is evident in major element concentrations and organic carbon content of most cores near the 10-ka horizon. This distinctive basal Holocene change is interpreted to be largely the result of changing sediment sources, an interpretation supported by TiO_2/Al_2O_3$ ratios. Organic carbon and carbonate contents also differ significantly between the Holocene and glacial intervals. The C/N ratio of organic matter is greater than 10 during the glacial period, but is less than 10 for the Holocene, suggesting that the influx of terrigenous organic matter was more volumetrically important than marine organic matter during glacial times. The chemical index of weathering (CIW) is higher for the Holocene than the glacial interval, and changes markedly at the basal Holocene geochemical boundary. Silt fractions are higher in the glacial interval, suggesting a strong effect of climate on silt particle transportation: terrigenous aluminosilicates and continental organic carbon transport were higher during glacial times than during the Holocene. Differences in sediment composition between the Holocene and glacial period are interpreted to have been climatically induced.

KATSTIC SINKHOLE SEDIMENTS OF DOLOSTONE IN THE UPPER MIDWEST'S DRIFTLESS AREA, USA

  • Oh, Jong-woo
    • Journal of the Speleological Society of Korea
    • /
    • v.34 no.35
    • /
    • pp.78-104
    • /
    • 1993
  • Analysis of one sinkhole, the Dodgeville sinkhole, developed in Ordovician dolostones in the Driftless Area of Wisconsin in the Upper Midwest'd Driftless Area reveals homogenous clayey sediment fills reflecting a range of dissolutional processes during the Quaternary or Pre-Quaternary. Granulometric analysis, graphical moments statistics, carbonate minerals, ana sand grain lithology were used to differentiate sinkhole sediment sources and modes of accumulation. Sediments in the dolostone sinkholes developed by dissolution. Sediments contain two major types of sediments : residual redish clay( autogenic sediments) and aeolian silt (allogenic sediments). The massive clay is generated from the weathered dolostone bedrocks as a in situ materials. The loessial silt is mostly derived from transportation of the surrounding surface materials, with some evidences of penetrated deposition. Unlike the collapsed sandstone sinkholes (Oh et al., 1993), dolostone sinkholes reveal homogenous, autogenic clay materials, and a geochemical composition indicative of in situ autogenic karstification. Dolostone sinkhole si1ts (26.9%) and sands (34.9%) are derived from weathered Plattevi1le-Galena dolostones, and contain high carbonate(37.5%), chert (57.2%) and lead ore (3%). Graphical moments statistics for sorting, skewness, and kurtosis indicate that sand grains from dolostones were derived entirely from local bedrock by in situ dissolution. Upper sinkhole sediments are pedagogically very young as carbonate is unleashed. Materials of the sinkhole sediment are definitely inherited from internal dolostones by dissolution and weathering, because not only a granulomatric comparison of dolostone and sandstone sediments demonstrates that they have heterogeneous paticle size distributions, but also 1ithologic analyses displays they differ completely.

  • PDF

Bathymetric Changes in the Nakdong River Estuary owing to Discharge from the Nakdong River Barrier and Environmental Factors (하구둑 방류와 환경적 인자에 따른 낙동강 하구 지역 해저 지형변화 연구)

  • Kim, Ki-cheol;Kim, Sung-Bo
    • Journal of Environmental Science International
    • /
    • v.30 no.7
    • /
    • pp.507-517
    • /
    • 2021
  • In this study, the bathymetric data acquired from 2018 to 2020 and the precipitation and suspended sediment data were analyzed for changes in bathymetry owing to the discharge from the Nakdong River barrier and environmental factors, especially the torrential rain in 2020. Sediment erosion and deposition processes are repeated because of complex environmental factors such as discharge from the Nakdong River barrier and the influence of waves generated from the external sea. In the first half of the year after the dry season, bathymetric data showed relative erosion trends, whereas in the second half after the flood season, deposition trends were identified owing to the increase in sediment transport. However, the data from the second half of 2020 showed a large amount of erosion, resulting in tendencies different to those of erosion in the first half and deposition in the second half of the year. This result is judged to be influenced by the weather in the summer of 2020. The torrential rain in the summer of 2020 resulted in a higher force of erosion than that of deposition. In summary, the tendency for erosion is more significant than that of sedimentation, especially in the main channel area of the Nakdong River.

The motion rule of sand particles under control of the sand transportation engineering

  • Xin, Lin-gui;Cheng, Jian-jun;Chen, Bo-yu;Wang, Rui
    • Wind and Structures
    • /
    • v.27 no.4
    • /
    • pp.213-221
    • /
    • 2018
  • In the desert and Gobi regions with strong wind and large sediment discharge, sand transporting engineering is more effective than sand blocking and sand fixing measures in sand prevention. This study uses the discrete phase model of 3D numerical simulation to study the motion trail, motion state and distribution rule of sand particles with different grain diameters when the included angle between the main shaft of the feather-row lateral transportation sand barrier and the wind direction changes, and conducts a comparison in combination with the wind tunnel test and the flow field rule of common sand barrier. According to the comparison, when wind-sand incoming flow passes through a feather-row sand barrier, sand particles slow down and deposit within the deceleration area under the resistance of the feather-row sand barrier, move along the transportation area formed by the transportation force, and accumulate as a ridge at the tail of the engineering. With increasing wind speed, the eolian erosion of the sand particles to the ground and the feather-row sand barrier is enhanced, and the sand transporting quantity and throw-over quantity of the feather-row sand barrier are both increased. When sand particles with different grain diameters bypass the feather-row sand barrier, the particle size of the infiltrating sands will increase with the included angle between the main shaft of the feather-row sand barrier and the wind direction. The obtained result demonstrates that, at a constant wind speed, the flow field formed is most suitable for the lateral transportation of the wind-drift flow when the included angle between the main shaft of the feather-row sand barrier lateral transportation engineering and the wind speed is less than or equal to $30^{\circ}$.