• 제목/요약/키워드: sediment transport modeling

검색결과 69건 처리시간 0.031초

Grid-Based Soil-Water Erosion and Deposition Modeling sing GIS and RS

  • Kim, Seong-Joon
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2001년도 학술발표회 논문집(I)
    • /
    • pp.25-34
    • /
    • 2001
  • A grid-based KIneMatic wave soil-water EROsion and deposition Model (KIMEROM) that predicts temporal variation and spatial distribution of sediment transport in a watershed was developed. This model uses ASCII-formatted map data supported from the regular gridded map of GRASS (U.S. Army CERL, 1993)-GIS (Geographic Information Systems), and generates the distributed results by ASCIIl-formatted map data. For hydrologic process, the kinematic wave equation and Darcy equation were used to simulate surface and subsurface flow, respectively (Kim, 1798; Kim et al., 1993). For soil erosion process, the physically-based soil erosion concept by Rose and Hairsine (1988) was used to simulate soil-water erosion and deposition. The model adopts sing1e overland flowpath algorithm and simulates surface and subsurface water depth, and sediment concentration at each grid element (or a given time increment. The model was tested to a 162.3 km$^2$ watershed located in the tideland reclaimed area of South Korea. After the hydrologic calibration for two storm events in 1999, the results of sediment transport were presented for the same storm events. The results of temporal variation and spatial distribution of overland flow and sediment areas are shown using GRASS.

  • PDF

GPU 연산을 활용한 유사이송 예측모형 개발 (Development of the sediment transport model using GPU arithmetic)

  • 노준수;손상영
    • 한국수자원학회논문집
    • /
    • 제56권7호
    • /
    • pp.431-438
    • /
    • 2023
  • 전 세계적으로 연안침식 문제가 대두됨에 따라 많은 해안선이 지형변화를 겪고 있다. 기후변화 및 해안인구증가로 미루어 볼 때 그 현상은 가속화될 수 있으며, 이에 대응하기 위해 신속하게 지형변화를 모의할 수 있는 유사이송 예측모형 개발의 중요성이 강조된다. 본 연구에서는 GPU (Graphics Processing Unit)를 기반으로 한 유사이송 예측모형을 제안하였으며, GPU 병렬연산을 활용함으로써 기존의 CPU 기반모형 대비 더욱 개선된 속도로 지형변화를 모의할 수 있도록 모형이 개발되었다. 개발된 모형에 대해 수치모형 성능과 GPU 연산효율에 초점을 맞추어 분석을 수행하였다. 모형의 성능검증을 위해 Dam-break 수리실험에 대해 수치모의를 수행하였으며, 모의결과가 관측된 실험데이터와 잘 일치하는 것을 확인하였다. GPU 연산효율은 CPU 기반모형과 수치모의 연산시간을 비교하여 분석하였으며, 개발된 GPU 기반모형이 연산시간의 효율이 상당히 우수한 것으로 확인되었다.

GIS와 연동된 2차원 퇴적물이동 모델링 (Coupling of GIS and time dependent 2-D Sediment Transport Modeling)

  • Lim, Hak-Soo;Kim, Chang S.;Lee, Sue-Hyun;Yoo, Dong-Hoon
    • 한국해안해양공학회:학술대회논문집
    • /
    • 한국해안해양공학회 2002년도 한국해안해양공학발표논문집 Proceedings of Coastal and Ocean Engineering in Korea
    • /
    • pp.208-211
    • /
    • 2002
  • The Kyunggi Bay (125-l28E, 36-38N) is a macro-tidal bay in the western central port of Korean Peninsula(Fig. 1). The Bay characterizes its feature as wide tidal flats, deep tidal channels and tidal sand ridges running in parallel to tidal flows. The macro-tidal range (up to approximately 8.6m) and consequent strong tidal currents erode the bottom sediment and selectively transport to the low-energy area forming tidal ridges or tidal flats. (omitted)

  • PDF

물리적 표토침식모형의 개발과 적용 (Development and Application of a Physics-based Soil Erosion Model)

  • 유완식;박준구;양재의;임경재;김성철;박윤식;황상일;이기하
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제22권6호
    • /
    • pp.66-73
    • /
    • 2017
  • Empirical erosion models like Universal Soil Loss Equation (USLE) models have been widely used to make spatially distributed soil erosion vulnerability maps. Even if the models detect vulnerable sites relatively well utilizing big data related to climate, geography, geology, land use, etc within study domains, they do not adequately describe the physical process of soil erosion on the ground surface caused by rainfall or overland flow. In other words, such models are still powerful tools to distinguish the erosion-prone areas at large scale, but physics-based models are necessary to better analyze soil erosion and deposition as well as the eroded particle transport. In this study a physics-based soil erosion modeling system was developed to produce both runoff and sediment yield time series at watershed scale and reflect them in the erosion and deposition maps. The developed modeling system consists of 3 sub-systems: rainfall pre-processor, geography pre-processor, and main modeling processor. For modeling system validation, we applied the system for various erosion cases, in particular, rainfall-runoff-sediment yield simulation and estimation of probable maximum sediment (PMS) correlated with probable maximum rainfall (PMP). The system provided acceptable performances of both applications.

AnnAGNPS 모형을 이용한 관목림지의 비점오염 모의 (Non-point Source Pollution Modeling Using AnnAGNPS Model for a Bushland Catchment)

  • 최경숙
    • 한국농공학회논문집
    • /
    • 제47권4호
    • /
    • pp.65-74
    • /
    • 2005
  • AnnAGNPS model was applied to a catchment mainly occupied with bushland for modeling non-point source pollution. Since the single event model cannot handle events longer than 24 hours duration, the event-based calibration was carried out using the continuous mode. As event flows affect sediment and nutrient generation and transport, the calibration of the model was performed in three steps: Hydrologic, Sediment and Nutrient calibrations. The results from hydrologic calibration for the catchment indicate a good prediction of the model with average ARE(Absolute Relative Error) of $24.6\%$ fur the runoff volume and $12\%$ for the peak flow. For the sediment calibration, the average ARE was $198.8\%$ indicating acceptable model performance for the sediment prediction. The predicted TN(Total Nitrogen) and TP(Total Phosphorus) were also found to be acceptable as the average ARE for TN and TP were $175.5\%\;and\;126.5\%$, respectively. The AnnAGNPS model was therefore approved to be appropriate to model non-point source pollution in bushland catchments. In general, the model was likely to result in underestimation for the larger events and overestimation fur the smaller events for the water quality predictions. It was also observed that the large errors in the hydrologic prediction also produced high errors in sediment and nutrient prediction. This was probably due to error propagation in which the error in the hydrologic prediction influenced the generation of error in the water quality prediction. Accurate hydrologic calibration should be hence obtained for a reliable water quality prediction.

Effect of Transport Capacity Formula on Spatial Distribution of Soil Erosion

  • Nguyen, Van Linh;Yeon, Minho;Cho, Seongkeun;Lee, Giha
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.150-150
    • /
    • 2021
  • Soil erosion due to climate change is one of the global environmental issues. Especially, Korea is vulnerable to soil erosion as the frequency of extreme rainfall events and rainfall intensity are increasing. Soil erosion causes various problems such as reduced farmlands, deterioration of water quality in rivers, etc. To these severe problems, understanding the process of soil erosion is the first process. Then, it is necessary to quantify and analyze soil ersoion using an erosion model. Soil erosion models are divided into empirical, conceptual, and physics-based models according to the structures and characteristics of models. This study used GSSHA (Gridded Surface Subsurface Hydrologic Analysis), the physics-based erosion model, running on WMS (Watershed Modeling System) to analyze soil erosion vulnerability of the CheonCheon watershed. In addition, we compared the six sediment transport capacity formulas provided in the model and evaluated the equations fir on this study site. Therefore, this result can be as a primary tool for soil conservation management.

  • PDF

시화호 점착성 퇴적물의 침강 특성에 관한 연구 (A Study on Settling Properties of Cohesive Sediments in Shihwa Lake)

  • 이영재;이상화;황규남;류홍렬
    • 한국해양공학회지
    • /
    • 제19권4호
    • /
    • pp.42-48
    • /
    • 2005
  • The sediment of Shihwa Lake contains an abundant quantity of cohesive sediments. The transport processes of the cohesive sediments are complex and difficult to predict, quantitatively. The cohesive sediments are the primary reason for the pollution of the environment and water quality in the coastal region. In this study, a column test has been performed. In order to quantify the settling velocities of sediment from Shihwa Lake, an experiment was conducted using a specially designed 1.8m tall settling column. A series of settling tests and physico-chemical property tests on Shihwa Lake cohesive sediments has been conducted to investigate the correlation between settling properties and their physico-chemical properties, which are represented as grain size distribution, mineralogical composition, and percentage oj organic contents. Experimental results of physico-chemical property tests show that Shihwa Lake sediments are relatively large in average grain $size(74\mu m)$ contain very small organic $material(6\%)$, and are dominantly composed of Quarts, which has relatively low cohesion. Thus, Shihwa Lake sediments might be specified as those whose settling properties are more influenced by gravity than cohesion. It is concluded that the magnitude of settling velocities of muddy sediments can be quite different, regionally, and it implies that field or laboratory experiments for settling velocity measurement should be preceded over the numerical modeling of muddy sediment transport, in order to obtain the reliable prediction results for a given specific site.

유한요소법을 이용한 만곡수로에서의 2차원 하상변동 수치모형 (2D Finite Element Modeling of Bed Elevation Change in a Curved Channel)

  • 김태범;최성욱;민경덕
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2005년도 학술발표회 논문집
    • /
    • pp.414-418
    • /
    • 2005
  • A finite element model is developed for the numerical simulation of bed elevation change in a curved channel. The SU/PG (Streamline-Upwind/Petrov-Galerkin) method is used to solve 2D shallow water equations and the BG (Bubnov-Galerkin) method is used for the Exner equation. For the time derivative terms, the Crank-Nicolson scheme is used. The developed model is a decoupled model in a sense that the bed elevation does not change simultaneously with the flow during the computational time step. The total load formula with is used for the sediment transport model. The slip conditions are described along the lateral boundaries. The effects of gravity force due to geometry change and the secondary flows in a curved channel are considered in the model. For the verification, the model is applied to two laboratory experiments. The first is $140^{\circ}$ bended channel data at Delft Hydraulics Laboratory and the second is $140^{\circ}$ bended channel data at Laboratory of Fluid Mechanics of the Delft University of Technology. The finite element grid is constructed with linear quadrilateral elements. It is found that the computed results are in good agreement with measured data, showing a point bar at the inner bank and a pool at the outer bank.

  • PDF