• 제목/요약/키워드: sediment toxicity test

검색결과 24건 처리시간 0.02초

국내 하천 퇴적물 건강성평가를 위한 Microtox 독성시험 조건확립 연구 (A Study for Testing Conditions of Microtox Toxicity Test to the Quality of Sediment in Domestic Rivers)

  • 정홍배;박정규;문성환;류태권;김소정;배철한;황인영
    • Environmental Analysis Health and Toxicology
    • /
    • 제16권4호
    • /
    • pp.143-151
    • /
    • 2001
  • Six rivers were selected as preliminary screening sites to determine the test conditions of Microtox in assessing the toxicity of the sediment. In addition, a pH range of 6.0∼6.5 was established in testing pore water, aqueous extracts and organic extracts. Each extractable fraction of sediment showed different toxicities. Therefore, in order to properly examine the toxicity in the sediment, all extractable fractions of sediment samples needed to be tested with Microtox. Thus, sediment samples were additionally collected from at least 4 secondary sites within 50∼100m area of the primary sampling site to reduce any variation or deviation in toxicity assessment. From all sediment toxicity data that was collected from this study, it was concluded that the Keumho river was the most polluted with the highest sediment toxicity of all the rivers analyzed and needed further detailed research on its pollution problem.

  • PDF

Application of Indigenous Benthic Amphipods as Sediment Toxicity Testing Organisms

  • Lee, Jung-Suk;Lee, Kyu-Tae;Kim, Dong-Hoon;Kim, Chao-Kook;Lee, Jong-Hyeon;Park, Kun-Ho
    • Ocean Science Journal
    • /
    • 제40권1호
    • /
    • pp.17-24
    • /
    • 2005
  • A series of experiments were conducted to develop standard test organisms and test protocols for measuring sediment toxicity using candidate amphipods such as Mandibulophoxus mai, Monocorophium acherusicum, Haustorioides indivisus, and Haustorioides koreanus, which are indigenous to Korea. The relevant association of test species with sediment substrates was one of the important factors in sediment bioassay. The indigenous amphipods M mai and M. acherusicum were well associated with test sediments when they were exposed to various sediment substrates from sand to mud. The tolerant limits to various physico-chemical factors affecting bioassay results such as temperature, salinity and ammonia, as well as sensitivities to reference toxicant and contaminated sediments, were investigated using M. mai and M. acherusicum in the present study. These amphipods were tolerant to relatively wide ranges of salinity $(10{\sim}30\;psu)$ and ammonia (<50 ppm), and displayed relevant sensitivity to temperature as well. They are more sensitive to Cd, the reference toxicant, when compared to the standard test species used in other countries. Field-sediment toxicity tests revealed that M. mai would be more sensitive to sediment-associated pollutants than M. acherusicum, while the sensitivity of M. acherusicum was comparable to that of Leptocheirus plumulosus, which has been used as a standard test species in the United States of America. Overall results of this first attempt to develop an amphipod sediment toxicity test protocol in Korea indicated that M. mai and M. acherusicum would be applicable in the toxicity assessment of contaminated sediments, following the further evaluation encompassing various ecological and toxicological studies in addition to test method standardization.

국내종 물벼룩 Simocephalus mixtus에 의한 습지퇴적물 독성도 측정 (Toxicity test of wetland sediments by Simocephalus mixtus)

  • 이찬원;권영택;윤종섭;문성원
    • 한국환경과학회지
    • /
    • 제11권9호
    • /
    • pp.851-855
    • /
    • 2002
  • A comparison of Daphnia magna, Ceriodaphnia dubia and Simocephalus mixtus toxicity test was performed to study the relative sensitivities and discrimination abilities with both pore and elutriate water of Woopo wetland sediments. Sediment risk assessment has been done by standardized preparation method of pore and elutriate water described in the joint US EPA-US Army Crops of Engineers manual. Simocephalus mixtus which was obtained from Woopo wetlands in Korea was cultured and applied to sediment toxicity test. Water quality in Woopo wetland had great site and seasonal variations. S. mixtus was more sensitive than D. magna in heavy metal toxicity test. The toxicity results with S. mixtus reflected the water quality of elutriate and pore water. The results also suggested that S. mixtus could be used as a test organism in estimating potential risk of contaminated sediments.

습지 퇴적물의 생태 환경독성도 평가 (Ecological Toxicity Assessment in Wetland Sediments)

  • 이찬원;권영택
    • 한국습지학회지
    • /
    • 제2권1호
    • /
    • pp.69-85
    • /
    • 2000
  • Wetlands are generally thought to be among the most fertile and productive ecosystems of the world. They provide a variety of ecological functions to the landscape. In recent years there has been considerable research activity to generate more scientific documentation on the ecological functions of wetlands. Many pollutants released to the environment settle and accumulate in the silt and mud called sediment on the bottoms of wetlands. Contaminated sediment can cause adverse effects to aquatic organism and eventually to ecological system. Sediment toxicity test with water fleas has been done by standardized preparation method of pore and elutriate water methods described in the literature for the need to protect Woopo wetlands. The results of Daphnia magna, Ceridaphnia dubla and Simocephalus sp. toxicity test were compared and discussed in terms of the relative sensitivity and discrimination abilities with both pore and elutriate water obtained from the sediments of Woopo wetlands.

  • PDF

Sediment Toxicity of Industrialized Coastal Areas of Korea Using Bioluminescent Marine Bacteria

  • Choi, Min-Kyu;Kim, Seong-Gil;Yoon, Sang-Pil;Jung, Rae-Hong;Moon, Hyo-Bang;Yu, Jun;Choi, Hee-Gu
    • Fisheries and Aquatic Sciences
    • /
    • 제13권3호
    • /
    • pp.244-253
    • /
    • 2010
  • The quality of marine sediments from the industrialized coastal areas of Korea (Ulsan Bay, Masan Bay, and artificial Lake Shihwa) was investigated using a bacterial bioluminescence toxicity test. Sediment toxicity results were compared with the levels of chemical contamination (trace metals, organic wastewater markers, acid volatile sulfides, total organic carbon). Effective concentration 50% (EC50) of sediments ranged from 0.014 to 1.126 mg/mL, which is comparable to or lower than values in contaminated lakes, rivers, and marine sediments of other countries. Sediment reference index (SRI) ranged from 13 to 1044, based on the EC50 of the negative control sample. Mean average SRI values in Masan Bay and Lake Shihwa were approximately 8 and 9 times as high as that in Ulsan Bay, indicating higher sediment toxicity and greater contamination in the two former regions. Sediment toxicity were strongly associated with the concentrations of some chemicals, suggesting that this test may be useful for determining potential chemical contamination in sediments.

국내산 저서 단각류를 이용한 퇴적물 독성시험법 개발에 관한 연구 (Development of Sediment Toxicity Test Protocols using Korean Indigenous Marine Benthic Amphipods)

  • 이정석;이승민;박경수
    • 한국해양학회지:바다
    • /
    • 제13권2호
    • /
    • pp.147-155
    • /
    • 2008
  • 본 논문은 저서 단각류를 이용한 해양생태독성시험법 개발을 위하여 국내에 분포하는 후보종을 이용하여 수행된 일련의 생태독성시험결과를 제시하고, 이에 근거하여 퇴적물 독성시험을 위한 표준 시험종과 방법을 제시하였다. 퇴적물 독성평가를 위한 시험종으로는 저서단각류인 Mandibulophoxus mai, Monocorophium acherusicum 그리고 여러 국내산 단각류를 이용하였다. 시험법 개발 및 표준화를 위한 시험항목으로는 퇴적물 입도, 수온, 염분 및 암모니아에 대한 내성범위를 파악하기 위한 실험과 카드뮴과 같은 중금속이나 PAHs와 같은 유기오염물질에 대한 민감도를 파악하기 위한 실험이 포함되었다. 시험 결과 두 종 모두 여러 환경요인에 대한 적합한 내성과 민감도를 갖고 있어 퇴적물 시험종으로서 활용이 가능한 것으로 나타났다. 최종적으로 이들 저서 단각류의 현장 적용성 평가를 위해서 다양한 오염도를 갖는 현장 퇴적물에서 10일간 노출한 이후 사망독성을 평가하고, 오염정도와 생물반응의 관계성 등을 분석하였다. 두 종을 비교한 결과, 민감도의 측면에서는 M. mai가, 시험생물 공급, 배양, 유지 및 실험수행의 편의성에서는 M. acherusicum이 상대적으로 뛰어난 것으로 나타났다. 하지만, 두 종 모두 10일간의 퇴적물 사망 독성시험의 시험종으로서 충분한 적합성을 갖고 있는 것으로 판단할 수 있다. 본 연구결과는 향후 단각류를 이용한 퇴적물 공정시험법의 작성에 활용될 수 있을 것으로 판단된다.

Chironomus riparius의 급성 및 만성영향에 의한 농약의 퇴적토 독성평가 (Sediment Toxicity Assessment of Pesticides using Chironomus riparius Acute and Chronic Effect)

  • 박정은;황은진;장희라
    • 한국환경농학회지
    • /
    • 제36권2호
    • /
    • pp.80-86
    • /
    • 2017
  • BACKGROUND: Pesticides is exposed in an aquatic environment and effected to benthic animals. Especially, sediment-associated pesticides is required for determination of sediment toxicity on aquatic organisms. This study was conducted to evaluate the impact of six pesticides (chlorfluazuron, difenoconazole, dithianon, flufenoxuron, flutianil, pendimethalin) on Chironomus riparius in aquatic ecosystems. METHODS AND RESULTS: Chlorfluazuron, difenoconazole, dithianon, flufenoxuron, flutianil and pendimethalin were used as a model compounds, which have a sediment-associated potential ($K_{oc}$>3). Acute and chronic toxicity tests on Chironomus riparius were performed at six concentrations of each pesticide with four replicates of each based on OECD test guideline 235 and 218. The calculated 48-h $EC_{50}$ values of chlorfluazuron, flutianil, pendimethalin, difenoconazole, dithianon and flufenoxuron were 6.72, 2.55, 2.27, 0.77, 0.30 and 0.11 mg/L, respectively. Flufenoxuron was the lowest 48-h $EC_{50}$ value in this study. The No Observed Effective Concentration (NOEC) and the Lowest Observed Effect Concentration (LOEC) of flufenoxuron for Chironomus riparius in 28-days test were 30 and $60{\mu}g/kg$, respectively. CONCLUSION: Pesticides of the sediment-associated have the potential effect for Chironomus riparius in aquatic ecosystems. Therefore, sediment toxicity assessment of these pesticides should be further investigated to evaluate the impact to benthic organisms.

Sediment Toxicity Assessment in the Intertidal Flat Zone of the Middle West Coast of Korea

  • Hwang, G.S.;Dave, G.;Nilsson, E.;Kim, K.
    • 한국환경보건학회지
    • /
    • 제30권4호
    • /
    • pp.347-351
    • /
    • 2004
  • A battery of sediment bioassays was performed for the sediments from the intertidal flat zone along the middle west coast of Korea to assess their potential toxicity. In the bioassays, three crustaceans, Daphnia magna, Nitocra spines, and Hyalella aztec a were exposed to $16\%$ sediments (wet weight) collected from 14 sites. Immobility($\%$) was checked as an endpoint after 24- and 48-h exposure of Daphnia magna and after 96-h exposure of Hyalella azteca and Nitocra spines. Among the three bioassays, the 48-h Daphnia bioassay showed the most distinct differential sensitivity in relation to sediment contamination, while the Nitocra and the Hyalella bioassays failed to show the differential sensitivity properly among the sites classified as polluted. Significantly different levels of immobility ($\%$) were obtained between the sites classified as chemical/nutrient polluted and the sites classified as non-polluted in the Daphnia bioassays, but not in the Nitocra bioassay and the Hyalella bioassay. Some differences of toxic response to the same sediments among bioassays were observed, suggesting that there may be a chemical specificity of response sensitivity to sediment toxicity, due to differences in bio-availability of sediment toxicants among test species.

PLHC-1세포주의 Comet assay를 이용한 하천 퇴적토의 생태독성평가 (Studies on Toxicological Evaluation of Freshwater Sediment using a PLHC-1 Cell Comet Assay)

  • 박정아;황인영;백승홍;김영숙
    • 환경생물
    • /
    • 제29권1호
    • /
    • pp.23-30
    • /
    • 2011
  • In this study, the Comet assay (evaluation of DNA damage) used the fish hepatocellular carinoma cell, PLHC-1, was tried to the sediment extract obtained from freshwater to understand its applicability as a tool for monitoring sediment toxicity. In parallel, induced EROD (7-ethoxyresorufin- O-deethylase) activity and DNA damage (TEM values) in PLHC-1 cells were measured for establishing the tandem endpoints of the PLHC-1cell test to test the ecotoxicity of sediment. Among several study sites in a small river passed through downtown and industrial park area, one of them, site B, showed a higher level of EROD activity and DNA damage than other sites. It indicates that a tandem endpoints of PLHC-1 cells could be useful tools for assessing the toxicity of sediment. The sensitivity of Comet assay with PLHC-1 cells was a little higher than that with a blood cell of frog tadpoles to the solvent extract of sediment. According to the results, a PLHC-1 cell-Comet assay could be used as a useful tool for evaluating ecotoxicity of the freshwater sediment. In addition, more detailed studies are needed to the contaminated site.

A Study of Ecotoxicity Test for Byproducts of Ozone in the Ballast Water Treatment System with Ozonation

  • Park, Sung-Jin;Ha, Shin-Young;Kim, In-Soo
    • 한국항해항만학회지
    • /
    • 제35권9호
    • /
    • pp.741-747
    • /
    • 2011
  • Ecological toxicity testing of the whole-effluent from the ozone ballast water treatment system was conducted as specified in the quality assurance project plans (QAPP). The growth inhibition test with microalgae, acute aquatic toxicity test with the Rotifer reproduction, toxicity test (or population growth) with the Rotifer, survival and growth toxicity test with larval fish and sediment toxicity test with amphipod were carried out to evaluate ecological toxicity on the movile test barge.