• Title/Summary/Keyword: sediment removal

Search Result 178, Processing Time 0.023 seconds

Influence of Effective Microorganisms on Polluted Marine Sediment and Its Microbial Community

  • Koh, Sung-Cheol;Kim, Byung-Hyuk;Bae, Hwan-Jin;Kwon, Sung-Hyun;Choi, Jung-Hye;Kim, Jae-Woo
    • Journal of Navigation and Port Research
    • /
    • v.33 no.2
    • /
    • pp.161-166
    • /
    • 2009
  • Lactobacillus sp., Acetobacter sp. and yeast were the most dominant organisms in the EM stock culture and subculture product. Lactic acid bacteria and yeast were able to grow in the fermentation process utilizing seawater. EM treatment of higher concentrations using EM stock culture and EM clay balls (1% or 4%) contributed to an early removal of malodor and an increase of DO in the polluted sediments, indicating an odor-removing activity of EM. The EM treatment of higher concentrations (1% or 4%) somewhat appeared to modify the microbial communities within the sediments, which was confirmed by existence of a few unique fragments from the stock culture based on PCR-DGGE. It still remains to be elucidated that EM cultures were directly involved in the malodor removal and potential sediment bioremediation.

Adsorption of Nitrate and Phosphate onto the Dredged Sediment from a Coastal Fishery (연안어장 준설퇴적물에 대한 질산염과 인산염의 흡착)

  • Sun, Young-Chul;Kim, Myoung-Jin;Song, Young-Chae
    • Journal of Navigation and Port Research
    • /
    • v.36 no.6
    • /
    • pp.459-463
    • /
    • 2012
  • In the present study, experiments have been performed to investigate the effects of the type of adsorbent, pH, and ionic strength on the adsorption of nutrients (nitrate and phosphate in artificial solution) onto the dredged sediment from a coastal fishery. In addition, this study aims to evaluate the possibility of removing the nutrients from the water using the dredged sediment. In the adsorption experiments of the nutrients, the reactions were completed within 10 minutes using ${NO_3}^-$-N($100{\mu}M$, 10mM) and ${PO_4}^{3-}$-P($100{\mu}M$, 10mM). In the steady state, 61% and 77% of the initial amounts were removed respectively for $100{\mu}M$ ${NO_3}^-$-N and $100{\mu}M$ ${PO_4}^{3-}$-P. The thermal treatment of the dredged sediment at $900^{\circ}C$ was not helpful to increase the removal efficiencies of the nutrients. Additives such as CaO and MgO dropped the removal efficiency of ${NO_3}^-$ to 0%, but increased that of ${PO_4}^{3-}$ up to 98%. Adsorption isotherms of ${NO_3}^-$ and ${PO_4}^{3-}$ could be explained by the Freundlich equation ($R^2$>0.99). The adsorption reaction was little influenced by the pH and ionic strength. Based on the results showing short reaction time and considerably high removal efficiencies of the nutrients, it is proposed to apply the dredged sediment from a coastal fishery to removing nutrients such as nitrate and phosphate in the water.

Numerical Simulation of Water Quality Enhancement by Removal of Contaminated Bed Material (하상오염물 제거에 의한 수질개선효과 수치모델링)

  • Lee, Nam-Joo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.3
    • /
    • pp.349-357
    • /
    • 2011
  • This study has an objective to estimate effect on water-quality enhancement by removal of contaminated river-bed material using a two-dimensional numerical modeling in the Seonakdong River, the Pyunggang River and the Maekdo River. RMA2 and RMA4 models were used for flow and contaminant transport simulation, respectively. After the analysis of the effects of flow restoration plan for the Seonakdong River system made by Lee et al (2008), simulation have been performed about scenarios which contains operations of the Daejeo Gate, the Noksan Gate, the Makdo Gate (on planning), and the Noksan Pumping Station. Because there is no option for elution from bed sediment in the RMA4 model, a simple technique has been used for initial condition modification for elution. The analyses revealed that the effect on water quality improvement due to dredging of bed sediment seemed to be less than 10 % of the total effect. The most efficient measure for the water quality improvement of the river system was the linked operation of water-gates and pumping station.

Solid-liquid Separation of Swine Wastewater using Bentonite (벤토나이트를 이용한 양돈 폐수의 고액분리)

  • Yim, Je-Hyun;Kang, Seon-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.6
    • /
    • pp.742-747
    • /
    • 2004
  • Solid-liquid separation of swine wastewater was conducted using bentonite as coagulant. During the separation experiment, coagulation efficiency was also investigated. To determine optimal bentonite dose, 0.1, 0.2, 0.4, 0.8, and 1.6% (w/v basis) of bentonite was dosed. Suspended solid removal efficiency was 87-98% at whole bentonite dosage. But sediment volume was increased, and settling velocity was decreased at excessive bentonite dosage. Therefore optimal bentonite dosage was evaluated around 0.2-0.4%. In the test to determine optimal pH, coagulation using bentonite was performed at pH 3, 4, 5, 6, and 7. At lower pH suspended solid removal efficiency was increased. However, sediment volume was also increased and phosphorus release was observed. Thereby optimal pH for bentonite coagulation might be appeared in the range of 6-7.

Adsorption of nitrate from contaminated sea water with activated dredged sediment (오염해수로부터 질산염의 제거를 위한 전처리 퇴적물의 흡착특성)

  • Song Young-Chae;Woo Jung-Hui;Jung Eun-Hye;Go Sung-Jung;Kim Dong-Geun
    • Journal of Navigation and Port Research
    • /
    • v.29 no.6 s.102
    • /
    • pp.589-593
    • /
    • 2005
  • A laboratory study on the adsorption of nitrate in polluted coastal water using various materials including several types of dredged sediments(ST) and yellow c1ays(YC), which are activated by heat(HT), bioleaching for heavy metal removal(BL) and neutralization(NR) was performed. The equilibrium time of the adsorption for the sediment bioleached and treated by heat(BL-HT-ST) was only 17min which was faster than the sediment bioleached, neutralized and treated by heat(BL-NR-HT-S) (25min) or the sediment treated by the bioleaching process(BL -ST)(27min), but longer equilibrium times for yellow c1ay(YC) or heat treated yellow day(HT- YC) were required. The adsorption processes of nitrate in sea water for tested material could be described by Freundlich isotherm, but were significantly affected by surface characteristics of the materials. The adsorption capacities for raw sediment and heat treated sediment were 2.12 and 2.19mg NO3-N/g, respectively, which were higher than others, indicating that the sediment activated by heat could be used as a material for the improvement of nearshore water quality.

Adsorption of nitrate from contaminated sea water with activated dredged sediment (오연해수로부터 질산염의 제거를 위한 개질 퇴적물의 흡착특성)

  • Song, Young-Chae;Woo, Jung-Hui;Jung, Eun-Hye;Go, Sung-Jung;Kim, Dong-Geun;Park, In-Seok
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.29 no.1
    • /
    • pp.311-316
    • /
    • 2005
  • A laboratory study on the adsorption of nitrate contaminated in nearshore water using various materials including several types of dredged sediments(ST) and yellow clays(YC), which are activated by hear(HT), bioleaching for heavy metal removal(BL) and neutralization(NR) was performed. The equilibrium time of the adsorption for the sediment bioleached and treated by heat(BL-HT-ST) was only 17min. which was faster than the sediment bioleached, neutralized and treated by heat(BL-NR-HT-S) (25min) or the sediment treated by the bioleaching process(BL-ST)(27min), but longer equilibrium times for yellow clay(YC) or heat treated yello clay(HT-YC) were required. The adsorption processes of nitrate in sea water for tested material could be described by Freundlich isotherm, but were significantly affected by surface characteristics of the materials. The adsorption capacities for raw sediment and heat treated sediment were 2.12, 2.19mg $NO_{3}$-N/g, respectively, which were higher than others, indicating that the sediment activated by heat could be used as a material for the improvement of nearshore water quality.

  • PDF

Odor Emission from Sediments in Sewer Systems and Odor Removal using an Electrolytic Oxidation Process (하수관거에 퇴적된 유기물에 의한 악취 발생과 산화전리시스템을 이용한 악취 저감)

  • Ahn, Hae-Young;Shin, Seung-Kyu;Song, Ji-Hyeon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.6
    • /
    • pp.703-710
    • /
    • 2011
  • Odor emission from domestic sewer systems has become a serious environmental problem. An investigation on a sewer manhole revealed that anaerobic decay of sediment organic matters (SOMs) and related declines of oxidation reduction potential (ORP) in the sediment layer were the main reason of the production of volatile sulfur compounds. In addition, as the anaerobic decaying period continued, the odor intensity rapidly increased with increasing concentrations of $H_2S$ and dimethyl sulfide. As a feasible method to control SOMs and to minimize odor emission potentials, an electrolytic oxidation process has been employed to the sediment sludge phase. In this study, voltages applied to the electrolytic oxidation process were varied as a main system parameter, and its effects on odor removal efficiencies and reaction characteristics were investigated. At the applied voltages greater than 20 V, the system efficiently oxidized the organic matter, and the ORP in the sludge phase increased rapidly. As a consequence, the removal efficiency of hydrogen sulfide was found to be >99% within 60 minutes of the electrolytic oxidation. Overall, the electrolytic oxidation process can be an alternative to control odor emission from sewer systems, and a threshold input energy needs to be determined to achieve effective operation of the process.

A study on sedimentation characteristic according to concentration change of top soil lost by flood (유실토양의 농도변화에 따른 침강특성에 대한 연구)

  • Jeon, Young-Bong;Kang, Seon-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.5
    • /
    • pp.581-587
    • /
    • 2014
  • Sediment basin that is typical facility installed for development business to prevent soil erosion has low removal efficiency and therefore, it causes complaints from the residents and has a bad effect on ecosystem. Thus there is a limit to control soil erosion using the existing design methods of sediment basin, so the purposes of this study is providing suitable design factors for sediment basin with regarding soil characteristic of development areas and analysing sedimentation characteristic by inflow concentration changes. The results, for analyzing the sedimentation characteristic by soil concentrations within approximately 2,000 ~ 20,000 mg/L of initial SS concentration, indicated similar sedimentation trends for same soil in the supernatant regardless of initial concentrations. However, for different soil characteristic (percent finer), there are different results in sedimentation rate and concentrations of the supernatant. Thus it is recommended that sediment basin to prevent soil erosion during construction should be designed based on retention time derived from soil sedimentation experiments regardless of inlet concentration. In addition, installing the soil erosion prevention facility at the back to satisfy effluent water quality should be considered to minimize soil erosion effectively.

Effects of Sand Supply and Artificial Floods on Periphyton in the Downstream of a Dam (Yangyang Dam, Korea) (모래 공급과 인공 홍수가 양양댐 하류하천의 부착조류에 미치는 영향)

  • Park, Misook;Lee, Jaeyong;Jung, Sungmin;Park, Chang-Keun;Chang, Kun;Kim, Bomchul
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.3
    • /
    • pp.418-425
    • /
    • 2012
  • Dam construction in a river can change its hydrological pattern and trap sediments, which results in ecological changes in the downstream. It is a common phenomenon in the downstream of dams to have decreased sediment flow and increased periphyton. Artificial floods and sediment application are suggested as mitigation practices in order to simulate natural process of flood; transporting sediment and sloughing periphyton off. In this study the effects of artificial floods on periphyton were examined by applying sand artificially and discharging water from a dam (Yangyang Dam, Korea). The study area has been suffering from turbidity problems caused by shore erosion of the dam. The accumulation of inorganic sediments and increase of periphyton on the river bottom are the major factors of habitat deterioration in the downstream reaches. Artificial flood and artificial addition of sand was performed in summer and the effects were measured. Piles of applied sands were washed off easily by discharge and it enhanced the periphyton sloughing effect. The removal efficiency of periphyton was 50 ~ 80% within the 2 km reach from the dam. In conclusion artificial floods and sand application can be a good mitigation measure for the habitat rehabilitation after a dam construction in streams.