• 제목/요약/키워드: sediment model

검색결과 807건 처리시간 0.028초

저수지 장기운영을 위한 퇴적토사의 효율적 관리(2) - 저수지 퇴사분포 및 저감방안 (An Efficient Management of Sediment Deposit for Reservoir Long-Term Operation (2) - Sediment Distribution and Reduction Method in Reservoir)

  • 안재현;장수형;최원석;윤용남
    • 한국물환경학회지
    • /
    • 제22권6호
    • /
    • pp.1094-1100
    • /
    • 2006
  • In this study, the reservoir sediment reduction methods for long-term operation are proposed by the analysis of both sediment deposit characteristics and sediment reduction effect by each method. To that end, a flowchart for sediment analysis in reservoir is established and sediment deposit is simulated by SMS-SED2D model. The sediment reduction methods which are sediment passing (sluicing), flushing, trapping, bypassing and mechanical removal are used. From the simulation results, the effective method for sediment reduction is operation which is coupled by both sediment passing with sand gate and sediment trapping with debris dam. And If sediment flushing will be used once a year after 50 years, conservation storage can be secured until 100 years after dam construction.

환경부 토지피복도 사용여부에 따른 예측 SWAT 오류 평가 (Analysis of SWAT Simulated Errors with the Use of MOE Land Cover Data)

  • 허성구;김남원;유동선;김기성;임경재
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2008년도 학술발표회 논문집
    • /
    • pp.194-198
    • /
    • 2008
  • Significant soil erosion and water quality degradation issues are occurring at highland agricultural areas of Kangwon province because of agronomic and topographical specialities of the region. Thus spatial and temporal modeling techniques are often utilized to analyze soil erosion and sediment behaviors at watershed scale. The Soil and Water Assessment Tool (SWAT) model is one of the watershed scale models that have been widely used for these ends in Korea. In most cases, the SWAT users tend to use the readily available input dataset, such as the Ministry of Environment (MOE) land cover data ignoring temporal and spatial changes in land cover. Spatial and temporal resolutions of the MOE land cover data are not good enough to reflect field condition for accurate assesment of soil erosion and sediment behaviors. Especially accelerated soil erosion is occurring from agricultural fields, which is sometimes not possible to identify with low-resolution MOD land cover data. Thus new land cover data is prepared with cadastral map and high spatial resolution images of the Doam-dam watershed. The SWAT model was calibrated and validated with this land cover data. The EI values were 0.79 and 0.85 for streamflow calibration and validation, respectively. The EI were 0.79 and 0.86 for sediment calibration and validation, respectively. These EI values were greater than those with MOE land cover data. With newly prepared land cover dataset for the Doam-dam watershed, the SWAT model better predicts hydrologic and sediment behaviors. The number of HRUs with new land cover data increased by 70.2% compared with that with the MOE land cover, indicating better representation of small-sized agricultural field boundaries. The SWAT estimated annual average sediment yield with the MOE land cover data was 61.8 ton/ha/year for the Doam-dam watershed, while 36.2 ton/ha/year (70.7% difference) of annual sediment yield with new land cover data. Especially the most significant difference in estimated sediment yield was 548.0% for the subwatershed #2 (165.9 ton/ha/year with the MOE land cover data and 25.6 ton/ha/year with new land cover data developed in this study). The results obtained in this study implies that the use of MOE land cover data in SWAT sediment simulation for the Doam-dam watershed could results in 70.7% differences in overall sediment estimation and incorrect identification of sediment hot spot areas (such as subwatershed #2) for effective sediment management. Therefore it is recommended that one needs to carefully validate land cover for the study watershed for accurate hydrologic and sediment simulation with the SWAT model.

  • PDF

Vertical distribution of suspended sediment concentration - A case study in Cu Lao Dung Coastal Areas (Vietnam)

  • Tien H. Le Nguyen;Phuoc H. Vo Luong
    • Ocean Systems Engineering
    • /
    • 제13권3호
    • /
    • pp.313-324
    • /
    • 2023
  • The vertical distribution of suspended sediments in the mangrove-mud coast is complicated due to the characterization of cohesive sediment properties, and the influence of hydrodynamic factors. In this study, the time-evolution of suspended sediment concentration (SSC) in water depth is simulated by a one-dimensional model. The model applies in-situ data measured in October 2014 at the outer station in Cu Lao Dung coastal areas, Soc Trang, Vietnam. In the model, parameters which have influence on vertical distribution of SSC include the settling velocity Ws and the diffusion coefficient Kz. The settling velocity depends on the cohesive sediment properties, and the diffusion coefficient depends on the wave-current dynamics. The settling velocity is determined by the settling column experiment in the laboratory, which is a constant of 1.8 × 10-4 ms-1. Two hydrodynamic conditions are simulated including a strong current condition and a strong wave condition. Both simulations show that the SSC near the bottom is much higher than ones at the surface due to higher turbulence at the bottom. At the bottom layer, the SSC is strongly influenced by the current.

저수지 장기운영을 위한 퇴적토사의 효율적 관리(1) - 저수지 퇴사량 산정 (An Efficient Management of Sediment Deposit for Reservoir Long-Term Operation (1) - Reservoir Sediment Estimation)

  • 안재현;장수형;최원석;윤용남
    • 한국물환경학회지
    • /
    • 제22권6호
    • /
    • pp.1088-1093
    • /
    • 2006
  • In this study, the method of annual sediment estimation for reservoir long-term operation is proposed. Long-term daily precipitation and evaporation are predicted by Markov Chain. Using these values, reservoir inflow is simulated by NWS-PC model. Reservoir sediment load is estimated by sediment rating relation curve which is observed. From the simulation results, it was found that each simulated value by Markov Chain and NWS-PC was well compared to the observed ones and also estimated reservoir sediment was appropriate to the compared values using empirical equations. It is thought that the proposed method for estimation of reservoir sediment can be useful used to operate the reservoir.

대청호내 흐름 및 유입 부유사 확산 모델링 (Modeling of Water Circulation and Suspended Sediment Transport in Lake Daecheong)

  • 정태성;황정화
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제6권4호
    • /
    • pp.67-82
    • /
    • 2003
  • 해양, 하천, 호수 등에서 퇴적물 수송과정을 모의할 수 있는 2차원 모형을 수립하였으며, 홍수시 대청호로 유입되는 입자성 오염물질의 이동경로를 파악하기 위하여 부유퇴적물 이동-확산 모델링을 시도하였다. 또한, 복잡한 지형을 가진 대청호의 흐름특성을 파악하고, 퇴적물 수송모형의 입력자조로 이용하기 위하여 2차원 흐름모델링을 수행하였다 홍수시 모의된 수위변화는 관측결과와 일치하는 양호한 계산결과를 보였다. 평상시는 유속이 5 cm/sec이하였으나, 최대유량이 3,852 CMS에 달하는 홍수시 대청호 유입수로에서 최강유속은 최대 약120 cm/sec까지 증가하였다 대청호로 유입되는 세립질 부유사는 홍수시는 대청댐까지 강한 유속에 의해 도달하나 유속이 약한 평상시에는 대청댐까지 도달하지 못하고 대부분 유입수로에 침전하였다 모의결과는 대청호 수질관리대책을 수립하는데 기초자료로 활용될 수 있을 것이다.

  • PDF

고랭지 농경지의 토양유실모의를 위한 SWAT 모형의 적용성 평가 (Evaluation of SWAT Applicability to Simulate Soil Erosion at Highland Agricultural Lands)

  • 허성구;김기성;사공명;안재훈;임경재
    • 농촌계획
    • /
    • 제11권4호
    • /
    • pp.67-74
    • /
    • 2005
  • The Doam watershed is located at alpine areas and the annual average precipitation, including snow accumulation, is significant higher than other areas. Thus, pollutant laden runoff and sediment discharge from the alpine agricultural fields are causing water quality degradation at the Doam watershed. To estimate soil erosion from the agricultural fields, the Universal Soil Loss Equation (USLE) has been widely used because of its simplicity to use. In the early spring at the Doam watershed, the stream flow increases because of snow melt, which results in erosion of loosened soil experiencing freezing and thaw during the winter. Also, extremely torrential rainfall, such as the typhoons 'RUSA' in 2002 and 'MAEMI' in 2003, caused significant amounts of soil erosion and sediment at the Doam watershed. However, the USLE model cannot simulate impacts on soil erosion of freezing and thaw of the soil. It cannot estimate sediment yield from a single torrential rainfall event. Also, it cannot simulate temporal changes in USLE input parameters. Thus, the Soil and Water Assessment Tool (SWAT) model was investigated for its applicability to estimate soil erosion at the Doam watershed, instead of the widely used USLE model. The SWAT hydrology and erosion/sediment components were validated after calibration of the hydrologic component. The R$^2$ and Nash-Sutcliffe coefficient values are higher enough, thus it is found the SWAT model can be efficiently used to simulate hydrology and sediment yield at the Doam watershed. The effects of snow melt on SWAT estimated stream flow and sediment were investigated using long-term precipitation and temperature data at the Doam watershed. It was found significant amount of flow and sediment in the spring are contributed by melting snow accumulated during the winter. Two typhoons in 2002 and 2003, MAEMI and RUSA, caused 33% and 22% of total sediment yields at the Doam watershed, respectively. Thus, it is recommended that the SWAT model, capable of simulating snow melt, sediment yield from a single storm event, and long-term weather data, needs to be used in estimating soil erosion at alpine agricultural areas to develop successful soil erosion management instead of the USLE.

유역침식 및 퇴적 잠재능 예측모델 개발 (Prediction of Watershed Erosion and Deposition Potentials)

  • 손광익
    • 한국방재학회 논문집
    • /
    • 제7권1호통권24호
    • /
    • pp.67-72
    • /
    • 2007
  • 본 연구에서는 토사에 대한 질량보존의 법칙을 이용하여 자연유역 내 토양의 침식 및 퇴적 잠재능을 산정할 수 있는 모델을 개발하였다. 이 프로그램은 각 셀 별 토사에 대한 질량보존의 법칙을 적용하여 GIS환경하에서 구동 가능하도록 구성되어있으며 셀 별 토사발생량은 RUSLE 공식을 이용하여 산정하였다. 토양의 침식 및 퇴적 잠재능은 토사의 유출량과 유입량의 차에 의해 각 셀이 침식되거나 퇴적된다는 질량보존의 법칙을 이용하여 산정하였다. 질량보존의 법칙을 적용하기 위한 셀 별 토사유출량은 토사발생량과 토사전달률을 곱하여 산정하였으며 이 토사 유출량이 흐름방향 알고리즘에 의해 결정되는 하류 셀의 토사유입량이 된다. 본 연구에서 개발된 모델을 이용하여 국내 소유역에 대해 적용하였으며 그 결과를 실측치와 비교함으로써 모델을 검증하였다.

AnnAGNPS 모형을 이용한 관목림지의 비점오염 모의 (Non-point Source Pollution Modeling Using AnnAGNPS Model for a Bushland Catchment)

  • 최경숙
    • 한국농공학회논문집
    • /
    • 제47권4호
    • /
    • pp.65-74
    • /
    • 2005
  • AnnAGNPS model was applied to a catchment mainly occupied with bushland for modeling non-point source pollution. Since the single event model cannot handle events longer than 24 hours duration, the event-based calibration was carried out using the continuous mode. As event flows affect sediment and nutrient generation and transport, the calibration of the model was performed in three steps: Hydrologic, Sediment and Nutrient calibrations. The results from hydrologic calibration for the catchment indicate a good prediction of the model with average ARE(Absolute Relative Error) of $24.6\%$ fur the runoff volume and $12\%$ for the peak flow. For the sediment calibration, the average ARE was $198.8\%$ indicating acceptable model performance for the sediment prediction. The predicted TN(Total Nitrogen) and TP(Total Phosphorus) were also found to be acceptable as the average ARE for TN and TP were $175.5\%\;and\;126.5\%$, respectively. The AnnAGNPS model was therefore approved to be appropriate to model non-point source pollution in bushland catchments. In general, the model was likely to result in underestimation for the larger events and overestimation fur the smaller events for the water quality predictions. It was also observed that the large errors in the hydrologic prediction also produced high errors in sediment and nutrient prediction. This was probably due to error propagation in which the error in the hydrologic prediction influenced the generation of error in the water quality prediction. Accurate hydrologic calibration should be hence obtained for a reliable water quality prediction.