• Title/Summary/Keyword: sediment mechanism

Search Result 116, Processing Time 0.022 seconds

The Distribution of Chironomids by Flow Mechanisms - Artificial Channel Measurement - (흐름 메카니즘에 의한 깔따구들의 분포(I) - 인공수로 실험 -)

  • Lee, Sang-Ho;Lee, Jung-Min;Park, Jae-Hyun;Song, Mi-Young
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.1
    • /
    • pp.150-158
    • /
    • 2006
  • Over the past few years, many studies have been conducted on the flow, sediment movement, pollution transportation and scour etc. However, very few attempts have been made at the hydraulic studies reflecting upon the ecological function. The objective of this study is to examine the structures of the flow and turbulence in an open circular channel and their relationship to distribution of the organisms and chironomids. Under different flow conditions, the organic matter and some chironomids were injected into the channel. Using the obtained velocity data, the flow mechanisms and the turbulent shear stresses were analyzed. Organic matters and chironomids were distributed on the region that the velocity was slower and the turbulent shear stresses were smaller. Some habitat moved even though chironomids were inhabited. This phenomenon has relationship with the flow mechanism. Some chironomids have distributed around the habitat structure of a hemisphere. The secondary flow has affected the deposition of the organic matters and the distribution of chironomids.

A Study on the Mechanism of Solved Phosphate and $Ca^{2+}$ ion in Wastewater (廢水에서 용존隣(P)과 $Ca^{2+}$이온의 反應機構에 대한 점토)

  • 이순기;강현찬
    • Resources Recycling
    • /
    • v.10 no.4
    • /
    • pp.24-33
    • /
    • 2001
  • For making a high degree of efficiency, this study attempts to gather each arisen-sludge from experiments and examine into its characteristics, in order to compare the biological reason of removing phosphorus with sintered body using calcite and the artificial reason of removing with a chemical reagent. First, it can be seen that sludge, which is identified CaCO$_3$, of 0.1∼0.2$\mu$m is regularly formed when using sintered body, calcite. And it is one of the results of the chemical methods in order to remove phosphorus that can be seen that sludges of 100∼50 $\mu$m are formed and that the forms of Ca$_2$P$_2$O$\_$7/, Ca$_3$(PO$_4$)$_2$$.$nH$_2$O, $\beta$-Ca$_2$P$_2$O$\_$7/ are shown when using a reagent, CaO dissolved water. The other of the results of the chemical methods can be seen that a lumpof sludge is formed when using wastewater and a reagent Ca$^2$$\^$+/ are used, and that the lump consists of Ca$_3$(PO$_4$)$_2$$.$nH$_2$O와 Ca$_2$H$_2$P$_4$O$\_$14/.

  • PDF

Grand Circulation Process of Beach Cusp and its Seasonal Variation at the Mang-Bang Beach from the Perspective of Trapped Mode Edge Waves as the Driving Mechanism of Beach Cusp Formation (맹방해안에서 관측되는 Beach Cusp의 일 년에 걸친 대순환 과정과 계절별 특성 - 여러 생성기작 중 포획모드 Edge Waves를 중심으로)

  • Cho, Yong Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.5
    • /
    • pp.265-277
    • /
    • 2019
  • Using the measured data of waves and shore-line, we reviewed the grand circulation process and seasonal variation of beach cusp at the Mang-Bang beach from the perspective of trapped mode Edge waves known as the driving mechanism of beach cusp. In order to track the temporal and spatial variation trends of beach cusp, we quantify the beach cusp in terms of its wave length and amplitude detected by threshold crossing method. In doing so, we also utilize the spectral analysis method and its associated spectral mean sand wave number. From repeated period of convergence and ensuing splitting of sand waves detected from the yearly time series of spectral mean sand wave number of beach cusp, it is shown that the grand circulation process of beach cusp at Mang-Bang beach are occurring twice from 2017. 4. 26 to 2018. 4. 20. For the case of beach area, it increased by $14,142m^2$ during this period, and the shore-line advanced by 18 m at the northen and southern parts of the Mang-Bang beach whereas the shore-line advanced by 2.4 m at the central parts of Mang-Bang beach. It is also worthy of note that the beach area rapidly increased by $30,345m^2$ from 2017.11.26. to 2017.12.22. which can be attributed to the nature of coming waves. During this period, mild swells of long period were prevailing, and their angle of attack were next to zero. These characteristics of waves imply that the main transport mode of sediment would be the cross-shore. Considering the facts that self-healing capacity of natural beaches is realized via the cross-shore sediment once temporarily eroded. it can be easily deduced that the sediment carried by the boundary layer streaming toward the shore under mild swells which normally incident toward the Mang-Bang beach makes the beach area rapidly increase from 2017.11.26. to 2017.12.22.

The Spatial Characteristics of Vertical Accretion Rate in a Coastal Wetland - In case of Sunchon bay estuarine marsh, south coast of Korea - (해안습지 성장률의 공간적 특성에 관한 연구 - 순천만 염하구 해안습지를 사례로 -)

  • Park, Eui-Joon
    • Journal of the Korean association of regional geographers
    • /
    • v.6 no.3
    • /
    • pp.153-168
    • /
    • 2000
  • An estuarine marsh is semi -inclosed inlets, located between coastal and terrestrial environment. The sediment transport by river and tide through tidal river and vertical accretion by sediment accumulation are important processes in estuarine marsh. An analysis of the vertical accretion rate at various time scale is important work for understanding and managing coastal environments. The purpose of this study is to determin the spatial characteristics of vertical accretion rate in an estuarine marsh, Sunchon Bay, in the southern coastal region of Korean peninsula. The methods of analysis are sedimentation rate by individual tidal cycle, annual accretion rate, concentration of total suspended load in water column. Spatial characteristics of sedimentation rate by individual tidal cycle was investigated using 30 filter paper traps. Sedimentation rate by individual tidal cycle at levee edge was higher than that at back marsh. The sedimentation rate decreased with distance from estuarine front. Levee effect and proximity to the turbidity maximum zone result in a higher sedimentation rate in the levee edge. There is a weak relation-ships between tidal regime and sedimentation rate by individual tidal cycle. Spatial cahracteristics of annual accretion rate was investigared using 30 artificial marker plots. Annual accretion rate at back marsh($1.5{\sim}3.5cm/yr$) was higher than that at tidal river levee edge($0.8{\sim}3.0cm/yr$). Total suspended load (TSL) concentrations in water column also indicate this spatial characteristics of annual accretion rate. TSL concentration in water column leaving the vegetation part dramatically decreased. There is a very strong relationship between the concentration of suspended load and accretion rate. These results indicate that annual accretion rate is controlled by vegetation cover and proximity to the turbidity maximum zone. This difference of spatial characteristics of vertical accretion rate ar various time-scale was due to the fact that surface sediment of levee edge was eroded by tide and other factors. The major findings are as follows. First, the spatial characteristics of vertical accretion rate are different from various time-scale. Second, the major mechanism for the vertical accretion rate in this region is suspended load trapping by vegetation. Third, this region is primarily a depositional regime over the time-scale of the present data Fourth, this estuarine marsh is accreting at rates beyond other area.

  • PDF

A Study on the Expansion Process of Vegetation on Sand-bars in Fluvial Meandering Stream (충적하천 사행하도에 발달한 사주에서의 식생형성 과정에 관한 연구)

  • Lee, Sam-Hee;Ock, Gi-Young;Choi, Jung-Kwon
    • Korean Journal of Environment and Ecology
    • /
    • v.22 no.6
    • /
    • pp.658-665
    • /
    • 2008
  • One of the characteristics of fluvial river channel with sand bed-material is the existence of movable sand bars not occupied with vegetation. However, sand bars at the Hahoe's reach of the Nakdong River showing a double-meandering channel has been changed into expanding vegetation area. Moreover, sand material, in recent years, has stopped moving to downstream in channel and the number and area of bare bars which did not occupied by vegetation have been decreased. In order to find out the mechanism, we carried out the channel characteristics surveys such as hydro-geomorphologic, soil physio-chemical and vegetation surveys were conducted twice on autumn season in 2005,2006. The results so far achieved showed that the reduced discharge of transported sediment and duration of dry season might be critical factors for the spread of luxuriant vegetation. The vegetation area was significantly expanded by floods exceeding the subsequent dominant flow discharge. Furthermore, the expansion of vegetation area was highly correlated with the supply of organic matter, nutrients and alteration of soil texture by sediment deposition during the flooding event.

Large-scale, Miocene Mud Intrusion into the Overlying Pleistocene Coastal Sediment, Pohang City, SE Korea: Deformation Mechanism, Trigger, and Paleo-seismological Implication for the 2017 Pohang Earthquakes

  • Gihm, Yong Sik;Ko, Kyoungtae;Choi, Jin-Hyuk;Choi, Sung-ja
    • Economic and Environmental Geology
    • /
    • v.53 no.5
    • /
    • pp.585-596
    • /
    • 2020
  • The 2017 Pohang Earthquakes occurred near a drill site in the Pohang Enhanced Geothermal System. Water injected for well stimulation was believed to have reactivated the buried near-critically stressed Miocene faults by the accumulation of the Quaternary tectonic strain. However, surface expressions of the Quaternary tectonic activity had not been reported near the epicenter of the earthquakes before the site construction. Unusual, large-scale water-escaped structures were identified 4 km away from the epicenter during a post-seismic investigation. The water-escaped structures comprise Miocene mudstones injected into overlying Pleistocene coastal sediments that formed during Marine Isotope Stage 5. This indicates the vulnerable state of the mudstones long after deposition, resulted from the combined effects of rapid tectonic uplift (before significant diagenesis) and the development of an aquifer at their unconformable interface of the mudstone. Based on the detailed field analysis and consideration of all possible endogenic triggers, we interpreted the structures to have been formed by elevated pore pressures in the mudstones (thixotropy), triggered by cyclic ground motion during the earthquakes. This interpretation is strengthened by the presence of faults 400 m from the study area, which cut unconsolidated coastal sediment deposited after Marine Isotope Stage 5. Geological context, including high rates of tectonic uplift in SE Korea, paleo-seismological research on Quaternary faults near the study area, and historical records of paleoearthquakes in SE Korea, also support the interpretation. Thus, epicenter and surrounding areas of the 2017 Pohang Earthquake are considered as a paleoseismologically active area, and the causative fault of the 2017 Pohang Earthquakes was expected to be nearly critical state.

A Modeling of the River Bed Variation due to Flood Wave (홍수파(洪水波)에 의한 하상변동(河床變動) 예측모형(豫測模型))

  • Park, Sang Deog;Lee, Won Hwan;Cho, Won Cheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.2
    • /
    • pp.73-82
    • /
    • 1989
  • When the flood occurs in the alluvial rivers, the rivers adjust to the flood by means of the mechanism of the river bed variations and its morphological changes to pass that safely, the numerical model was developed to simulate the process of the alluvial river bed variation due to flood wave and carried out by the flood routing for flood wave and the sediment routing for river bed variation. The flood wave, river bed variation, and bed material size distribution may be analysed and predicted by this model. The ability of this model to predict the process of river bed response was proved by the application to the reach from Paldang dam to Indogyo site. In view of the flood analysis considering the sediment process, the effects of river bed variation for the flood routing may be negligible because the river bed variation is smaller than the unsteady flow variation during the same period. By the application of this model, it is shown that, in occurring of sequential flood events, the variation of the river bed and bed material size distribution due to flood wave is more dependent on the first flood event than the latter flood events, and that the river bed variation in this reach of the downstream Han river is dependent on the degradation and the coarsening of bed materials.

  • PDF

Sediments Distribution and Micro-topographical Landscape Changes of a Composite Mixed Beach - Padori Beach in Taean National Park - (혼합해빈의 퇴적물 분포 특성과 미지형 경관변화 - 태안해안국립공원 파도리 해빈을 중심으로 -)

  • LEE, Won Young;SUNG, Hyo Hyun
    • Journal of The Geomorphological Association of Korea
    • /
    • v.20 no.4
    • /
    • pp.1-13
    • /
    • 2013
  • Padori beach is one of the representative composite mixed beach in Korea and shows divert geomorphic landscape change. It belongs to the Taean National Park. The purpose of this study is to clarify movement mechanism of sediments from sediment distribution of Padori beach associated with morphology. In addition, it is to explain morphological landscape change under different wave and tide condition in the composite mixed beach consisting of a dissipative low tide terrace and a reflective beach face with a high tide range of 5 to 7m. The results of this study are: First, the mean grain size of sediments becomes smaller from the south of the beach, where there is a wide wave-cut platform, to the north because gravels are supplied from the wave-cut platform as well as sea-cliff in the south of the beach. A sedimentation pattern of the sandy gravel on the beach face and gravel on the berm, and gradation phenomena of grain size on cross-shore and alongshore direction in the beach can be explained with a pattern of sediment movement, overpassing, in the composite mixed beach. Second, micro-topography on beach face and berm were changed depending on effects of wave height and tide. As a result, in low-wave energy environments, a berm is developed in large size, and beach cusps are formed on the upper beach face, while in high-wave energy environments, a berm is built up in relatively small size, and mixture of sediments occur on the upper beach face.

FEM Numerical Formulation for Debris Flow (토석류 유동해석을 위한 유한요소 수식화)

  • Shin, Hosung
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.10
    • /
    • pp.55-65
    • /
    • 2014
  • Recent researches on debris flow is focused on understanding its movement mechanism and building a numerical simulator to predict its behavior. However, previous simulators emulating fluid-like debris flow have limitations in numerical stability, geometric modeling and application of various boundary conditions. In this study, depth integration is applied to continuity equation and force equilibrium for debris flow. Thickness of sediment, and average velocities in x and y flow direction are chosen for main variables in the analysis, which improve numerical stability in the area with zero thickness. Petrov-Galerkin formulation uses a discontinuous test function of the weighted matrix from DG scheme. Presented mechanical constitutive model combines fluid and granular behaviors for debris flow. Effects on slope angle, inducing debris height, and bottom friction resistance are investigated for a simple slope. Numerical results also show the effect of embankment at the bottom of the slope. Developed numerical simulator can assess various risk factors for the expected area of debris flow, and facilitate embankment design in order to minimize damage.

A Study on the structures of flow and water quality in the Kitan strait (Kitan 해협의 유동 및 수질구조에 관한 연구)

  • ;;Nakatsuji Keiji
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.15 no.4
    • /
    • pp.259-268
    • /
    • 2003
  • The damage of water quality like red tide occurs every year inspite of the total load regulation of pollutant inflows from land such as COD, phosphorus and so on around Seto inland sea in Japan. It is attributed to the increase of primary production due to eutrophication. and the rising and settling from the sediment containing nutrient salt. Furthermore, the recent research shows that nutrient salt such as nitrogen and phosphorus, flows into Kii channel from land as well as the Pacific ocean. To investigate the distribution of water quality and flow and residual current in Kitan strait, the field observations were carried out. The field data were obtained a time each season from 1999 to 2002. The results of observations and data of other research institution are used to understand the mechanism of pollution in the strait.