• Title/Summary/Keyword: sediment load

Search Result 211, Processing Time 0.018 seconds

Prediction of total sediment load: A case study of Wadi Arbaat in eastern Sudan

  • Aldrees, Ali;Bakheit, Abubakr Taha;Assilzadeh, Hamid
    • Smart Structures and Systems
    • /
    • v.26 no.6
    • /
    • pp.781-796
    • /
    • 2020
  • Prediction of total sediment load is essential in an extensive range of problems such as the design of the dead volume of dams, design of stable channels, sediment transport in the rivers, calculation of bridge piers degradation, prediction of sand and gravel mining effects on river-bed equilibrium, determination of the environmental impacts and dredging necessities. This paper is aimed to investigate and predict the total sediment load of the Wadi Arbaat in Eastern Sudan. The study was estimated the sediment load by separate total sediment load into bedload and Suspended Load (SL), independently. Although the sediment records are not sufficient to construct the discharge-sediment yield relationship and Sediment Rating Curve (SRC), the total sediment loads were predicted based on the discharge and Suspended Sediment Concentration (SSC). The turbidity data NTU in water quality has been used for prediction of the SSC in the estimation of suspended Sediment Yield (SY) transport of Wadi Arbaat. The sediment curves can be used for the estimation of the suspended SYs from the watershed area. The amount of information available for Khor Arbaat case study on sediment is poor data. However, the total sediment load is essential for the optimal control of the sediment transport on Khor Arbaat sediment and the protection of the dams on the upper gate area. The results show that the proposed model is found to be considered adequate to predict the total sediment load.

Ratio of Bedload to Total Sediment Load in Gravel-bed Rivers (자갈하천 총유사량에 대한 소류사의 비율)

  • Park, Sang Doeg
    • Journal of The Geomorphological Association of Korea
    • /
    • v.25 no.2
    • /
    • pp.15-29
    • /
    • 2018
  • The sediment transport process in a river reflects the process of geomorphological change in the watershed, influencesthe river bed variation and the river channel migration, and is a parametric phenomenon that exhibits a dynamic self-adjusting process. Sediment load is divided into bedload and suspended load depending on the dominant mechanism. Quantitative sediment load is important information for solving river problems. Because it is difficult and time consuming to measure bedload, compared to that ofsuspended load, data on the sediment transport load and the research required for the gravel-bed rivers are insufficient. This study is to analyze the ratio of the bedload to the total sediment load in gravel-bed rivers. The sediment load ratio in gravel-bed rivers increases with the flow rate per unit width, and the rate of the bedload varies more rapidly than the suspended load. The sediment transport efficiency coefficient has been affected by the ratio of the flow depth to the mean diameter of particles and has been dependent on the shear velocity Reynolds number. So $A^{\ast}$ and $B^{\ast}$ are introduced to compensate for the uncertainties such as bed materials, sediment transport, and flow velocity distribution, and the coefficient of bedload ratio has been presented. For the sediment load data in experimental channels and rivers, A* was 3.1. The dominant variables of $B^{\ast}$ were $u_*d_m/{\nu}$ in the gravel-bed and h/dm in the sand-bed. When $B^{\ast}$ the is the same, in the experimental channels the coefficient of bedload ratio was affected by the bed forms, but in the rivers it was of little difference between the gravel-bed and sand-bed.

A Study on Sediment Load in the Milyang River (유사량 산정에 관한 연구 (밀양강을 중심으로))

  • 안세영;민벙형
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.22 no.4
    • /
    • pp.96-107
    • /
    • 1980
  • This study is carried out to estimate the rate of sediment transportation both to measure the amount of suspended and bedload sediment that moves on or near the river bed and passes through the cross section of a river in unit time, with suspended and bed load samplers used for the Milyang river and to determine the most satisfactory and convenient formula of some formulas for sediment discharge by comparing the measured rate with the calculated rate. The results of this study are summarized as follows; 1) The interrelationship (1) between the total discharge and the total sediment discharge (2) between discharge and suspended sediment load and (3) between discharge and bed load in the Milyang river are (1) i) 4$\leq$Q$\leq$100 C.M.S. Qr=0. 00272 Q0.70 (kg/sec) ii) 150$\leq$Q$\leq$800 C.M.S. Qr=0. 4807 Q0.46 (kg/sec) (2) Qs~=0. 07576 Q1.02 (kg/sec) (3) QB=0. 00957 Q0.44 (kg/sec) 2) The rate of suspended sediment load to total sediment discharge is found to be about; 99%. The suspended load is shown to be almost wash load which consists of silt and clay. 3) The relation between the total discharge and the suspended sediment load that are measured at three medium and small rivers in Korea is Qs=0. 13831 Q0.97 (kg/sec) 4) Brown's formula is determined to be the most convenient formula for application and comparison with observed data obtained for the Milyang river.

  • PDF

Analysis and Suggestion of Estimation Equation for Sedimentation in Square Manholes with Straight Path (사각형 중간맨홀에서의 유사 퇴적 분석 및 산정식 제안)

  • Kim, Jung-Soo;Song Ju-Il;Rim Chang-Soo;Yoon, Sei-Eui
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.2
    • /
    • pp.177-189
    • /
    • 2012
  • Sediment load deposited in sewers and manholes reduces not only the capacity of pipes but also the efficiency of the whole sewer system. This causes the inundations of the low places and overflows at manholes, Moreover, sulfides and bad odor can occur due to deposited sediment with organic loads in manholes. Movements of sediment load in manholes are complicated depending on manhole size, location, inside structure, sediment load type, and time. Therefore, it is necessary to understand the movements of sediment load in manholes by experiments. In this study, experiments were implemented by a square manhole with straight path to measure deposited sedimentation quantity. The experimental apparatus was consisted of a high water tank, an upstream tank, test pipes, a sediment supplier, a manhole, and a downstream tank to measure the experimental discharge. The quantity of deposited sediment load was measured by different conditions, such as the inflow condition of sediment(continuous and certain period), the amount of inflow sediment, discharge, and the type of sediment. Jumoonjin sand(S=2.63, D50=0.55mm), general sand(GS, S=2.65, D50=1.83mm) and anthracite (S=1.45, D50=0.80mm) were employed for the experiment. The velocities in inflow pipe were 0.45 m/s, 0.67 m/s, and 0.9 m/s. Sediment load movement and sedimentation quantity in manhole were influenced by many factors such as velocity, shear stress, viscosity, amount of sediment, sediment size, and specific gravity. Suggested regression equations can estimated the quantity of deposited sediment in the straight path square manholes. The connoted equations that were evaluated through the experimental study have velocity range from 0.45 to 0.9m/sec. The study results illustrates that appropriation of design velocity ragne between 1.0 and 2.0m/sec could implement to maintain and manage manholes.

A Study on Estimation by Depth Integrating Method of Sediment Discharge (수심적분법에 의한 유사량 추정연구)

  • 서승덕;김활곤;우효섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.1
    • /
    • pp.90-97
    • /
    • 1996
  • In Korea, total sediment discharge of a river has been estimated simply by using certain sediment transport formulas including, among others, Einstein's formula. Those formular, however, are known not to be reliable enough for the result calculated by them to be used directly to river planning and management. Therefore, the study used the Modified Einstein Procedure to the estimation of total sediment discharge, because this method is reliable estimated by measurement. Here, measurement of sediment discharge used depth integrating method. The major results obtained from the study for estimation by depth integrating method of sediment discharge in Naeseong stream are as follow; 1 The sedeiment characteristics of Naeseong stream are; The distribution of sediment grain size shows that silt and clay are 55% and sand is 45%. and the bed load sediment grain size is constituted that sand contained with the grain size from O.062mm to 2.0mm is 80% 2. The sediment rating formulas derived from the regression analysis between the sediment discharge and flow discharge are; Seogpo-Gyo : Qs=$0.017 \times 10^{-4} Q^{2.352}$, where discharge is l0cms $0.074 \times 10^{-4} Q^{2.066}$, where discharge is l0cms

  • PDF

A Study on Relationship between Point Load Strength Index and Abrasion Rate of Sediment Particle (퇴적물 입자의 점하중강도지수와 마식율의 관계에 대한 연구)

  • Kim, Jong-Yeon
    • Journal of the Korean Geographical Society
    • /
    • v.43 no.6
    • /
    • pp.808-823
    • /
    • 2008
  • Sediment abrasion in rivers is caused by the interaction between bedrock channel bed and sediment particles transported through the river. Abrasion rate of sediment particles in rivers is controlled by two major factors; Sediment transport conditions including hydraulic conditions form the erosive forces and physical and chemical strengths of the particles form a resistance force against abrasion and other erosional processes. Physical experiments were performed to find the role of each variable on sediment abrasion process. Total 266 sediment particles were used in this experiment. All sediment particles were divided into 11 independent sediment groups with sediment particle size and sediment loads. Each sediment groups were abraded in tumbling mill for up to 8 hours. Changes in weight were recorded by run and total: 2,128 cases of abrasion rate were recoded. Physical strength of rock particles was measured with point load strength index. It is found that sediment abrasion rate has a negative functional relationship point load strength index ($I_{a(50)}$) ($R^2=0.22$). It was suggested that physical strength of sediment particles set the "maximum possible abrasion rate'. As sediment flux increases, abrasion rates of sediment particles with similar point load strength index were changed. It could be concluded that not only physical characteristics of sediment particles, but also sediment transport conditions control sediment abrasion rates.

A Study on characteristics of sediment transfer in Nakdong estuary (낙동강 하구의 퇴적물 이동특성에 관한 연구)

  • Jeon Yong-ho;Lee In-Cheol;Ryu Cheong-Ro
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.161-166
    • /
    • 2004
  • Research for deposits in Nakdong eatuary that research about Nakdong eatuary's sediment flows out in Nakdong-kang so far had been progressed but research about deposits that is flowed in open sea is insufficient. Observed Nakdong eatuary's characteristic of sediment transfer through observation during the second during Buteo 20 days on February 6, 2004 in this research Resuspension bed load Flux appeared high the first result St.4 point and St.5 point. St.4 branch had much bed load amount that is flowed in the east, and bed load that St.5 branch is flowed in the south appeared much Tendency such as the first showed in the second result, but compare with the first result and St.5 branch had much bed load that is transfer in end. Bed load that is transfer in observation result Nakdong river was less. As this, can know that amount of sediment that is transfer in open sea more than deposits that is transfer in Nakdong river is much Is expected to exert effect that deposits that is transfer in open sea is high in Nakdong estuary's topography change. Specially, observation result is expected that Nakdong estuary's deposition tendency becomes Jinwoodo southern and Shinho southern.

  • PDF

A Study on the Topography Change of Hyeya River and Jinha Beach (회야강 하구 및 진하해수욕장의 지형변화에 관한 연구)

  • 민병형;민일규;이동수
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.84-95
    • /
    • 1994
  • In recent years Jin-Beach and Hyeya River mouth have experienced severe erosion phenomena. The cause of erosion is examined using a 3-dimensional nunumerical sediment transport model. The model is composed of three components : wave model, wave-induced current model and 3-dimensional sediment transport model. In the wave analysis component we consider refraction, diffraction and reflection based on Maruyama and Kajima method. For the wave-induced current model we use depth-integrated continuty equation and momentum equations. For the 3-dimensional sediment transport model we consider bed load and suspended load simutaneously. Model results obtained for Jin-ha Beach and Hyeya River mouth agreed well with experimental results.

  • PDF

A Bed Level Change Model(SED-FLUX) by Suspended Sediment Flux and Bed Load Flux in Wave-Current Co-existing Fields (파-흐름 공존장에서 부유사와 소류사 flux에 의한 지형변화모델)

  • Lee, Jong Sup;Yoon, Eun Chan;Park, Seok Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3B
    • /
    • pp.311-319
    • /
    • 2006
  • A bed level change model(SED-FLUX) is introduced based on the realistic sediment transport process including bed load and suspended load behaviours at the bottom boundary layer. The model SED-FLUX includes wave module, hydrodynamic module and sediment transport and diffusion module that calculate suspended sediment concentration, net sediment erosion flux($Q_s$) and bed load flux. Bed load transport rate is evaluated by the van Rijn's TRANSPOR program which has been verified in wave-current fields. The net sediment erosion flux($Q_s$) at the bottom is evaluated as a source/sink term in the numerical sediment diffusion model where the suspended sediment concentration becomes a verification parameter of the $Q_s$. Bed level change module calculates a bed level change amount(${\Delta}h_{i,j}$) and updates a bed level. For the model verification the limit depth of the bed load transport is compared with the field experiment data and some formula on the threshold depth for the bed load movement by waves and currents. This model is applied to the beach profile changes by waves, then the model shows a clear erosion and accumulation profile according to the incident wave characteristics. Finally the beach evolution by waves and wave-induced currents behind the offshore breakwater is calculated, where the model shows a tombolo formation in the landward area of the breakwater.

Effect of the Forest Road on Suspended Sediment Yield in the Small Forest Watershed (산지(山地) 소유역(小流域)에 개설(開設)된 임도(林道)가 부유사(浮遊砂) 유출(流出)에 미치는 영향(影響))

  • Oh, Jae-Man;Inoue, Shoji;Ezaki, Tsugio;Chun, Kun-Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.88 no.4
    • /
    • pp.477-484
    • /
    • 1999
  • This study was conducted to investigate the effect of forest road on the suspended sediment yield into a stream in the small forest watershed. The samples of suspended sediment yield were collected at surveying points A and B in mountains watersheds unaffected by forest road, and at surveying point C affected by forest road. When hourly change of suspended sediment concentration was investigated, it showed the highest increase along the forest road, and the peak of suspended sediment concentration due to the watershed characteristics of each surveying point occurred before or at the same time with, the peak of discharge. This may be due to the time lag in which stagnated unstable suspended sediment moved strongly upon rainfall. Although suspended sediment load varied depending upon rainfall factors and surveying period, suspended sediment load per unit watershed flowed out 4.1 times more at the point C than at the point A and B. The suspended sediment load on 18~19 September, 1998, strongly affected by rainfall factors, was 4.179g/sec/㏊ at the point C, and 0.343g/sec/㏊ and 0.147g/sec/㏊ at the point A and B, respectively. This load was 12 times higher at the point C than at the point A and 28 times higher than at the point B.

  • PDF