• Title/Summary/Keyword: sediment distribution

Search Result 842, Processing Time 0.033 seconds

Distribution Characteristics of Organic Matter and Heavy Metal of Sediment in Daecheon Port (대천항 퇴적물의 유기물 및 중금속 분포 특성)

  • Shin, Woo-Seok;Lim, Ji-Yoon;Yoon, Young-Gwan
    • Journal of Korean Society of Water Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.43-51
    • /
    • 2018
  • In order to systematically and scientifically manage the organic and heavy metals against sediment at Daecheon Port, this study conducted particle composition, organic materials and heavy metals irradiation studies of sediments. Analysis of the grain size composition of sediments in the target study area showed the distribution characteristics of the mix of sand, silt and clay. That is, Station C (Stn. C) showed superior by fine-grained sediment, Station A and B (Stn. A and B) showed superior by coarse-grained sediment. The organic matter(COD, TOC, and IL) of Stn. C was appeared to be heavily polluted more than Stn. A and B. These data for the spatial properties in sediment showed that organic matter was related positively to the sediment silt-clay content. Also, in the case of heavy metals contamination in surface sediments, Stn. C was higher than Stn. A and B. Particularly, at the Stn. C, high organic matter concentration and C/N ratio value( >10) indicated that the sediment was composed highly of land-derived organic matter. From these results, it considered that the correlation analysis among to silt-clay, organic matter and heavy metal was found to have a good interrelationship.

Estimation of Sediment Concentration Factor based on Entropy Theory (엔트로피 이론 기반의 유사농도 인자 산정)

  • Kim, Yeong-Sik;Nam, Yoon-Chang;Jeon, Hae-Sung;Jeon, Kun-Hak;Choo, Yeon-Moon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.325-333
    • /
    • 2020
  • Current methods of measuring the sediment concentration of natural streams can be affected by weather conditions and have lower reliability in bed-load sections due to mechanical limits. Theoretical methods have to be used to solve this problem, but they have low reliability compared to the measured values and diverse results for the bed-load sediment concentration. This study proposes a new way to reliably determine the bed-load sediment concentration from the relation with theoretical depth-integrated concentration based on the informational entropy concept. Sediment distribution shows a uniform probability distribution under maximized entropy conditions under some constraints, so a function can be calculated for the sediment distribution and depth-integrated concentration. The parameters of a stream were estimated by a nonlinear regression method using the concentration data from a past experiment. Equilibrium N (EN) was estimated using the relation between two different formulas proposed in this study, which can ease the estimation of both the total sediment distribution and depth-integrated sediment concentration with high reliable results with an average R2 of 0.924.

Comparative Analysis of the Sediment Transport Region based on the Lagrangian Concept (Lagrangian 개념에 의한 부유토사 확산범위 비교분석)

  • Cho, Hong-Yeon;Kim, Chang-Il;Lee, Khil-Ha
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.2
    • /
    • pp.105-112
    • /
    • 2007
  • Sediment transport model based on the Lagrangian concept considering the grain size distribution(GSD) was setup and the change of the sediment diffusion range was analysed in the condition of considering and not considering the GSD. The GSD curve is assumed as the Log-normal distribution function in order to consider the GSD with respect to the Lagrangian concept and the random numbers, i.e. sediment particles, are generated based on the distribution function. The sediment particles is assumed as the spherical type and the random numbers based on the sediment weight is converted to the sediment diameters. Sediment transport patterns are analysed by the settling simulation, in which the settling velocity is computed by the van Rijn formulae and the horizontal diffusion coefficient is used as the constant parameter. The diffusion patterns are very similar to the patterns with GSD condition. The diffusion range defined as the range including 90%, 99% sediment weight of the total sediment weight, however, is larger than without considering GSD condition in 90%-option and shorter than with considering GSD condition in 99-option, respectively. The diffusion range is defined as tile p-percentage of the cumulative sediment weight region with reference to the 50% region, 90%- option, 99%-option, respectively.

An Examination of Sediment Discharge Computation Errors Related to Imprecise Factors (부정확한 인자와 관계된 유사량 산정 오류에 대한 검증)

  • 정관수
    • Water for future
    • /
    • v.29 no.3
    • /
    • pp.129-142
    • /
    • 1996
  • This study investigates the magnitude of errors that can be expected in integrating sediment concentration in a vertical, basede on a single-point measurement, because of errors in input data. Potential error sources, including sampler location, water surface elevation, bed elevation, fall velocity, $\beta$ value, and $\kappa$ value were comparatively examined using data from a special study on the Rio Grande Conveyance channel in New Mexico. It is concluded that simple forms of equations for the vertical distribution of velocity and sediment concentration based on a single-point field sample of suspended sediment. The most uncertain point in the computation is related to the Rouse number z in the equation for the vertical concentration distribution of suspended sediment.

  • PDF

Meiobenthic Communities in the Deep-sea Sediment of the Clarion-Clipperton Fracture Zone in the Northeast Pacific (북동 태평양 C-C 해역에 서식하는 중형저서동물 군집)

  • Kim, Dong-Sung;Min, Won-Gi;Lee, Kyoung-Yong;Kim, Ki-Hyune
    • Ocean and Polar Research
    • /
    • v.26 no.2
    • /
    • pp.265-272
    • /
    • 2004
  • This study was conducted to investigate the community structure and distributional pattern of meiobenthos in the deep-sea bottom of the Clarion-Clipperton Fracture Zone of northeastern Pacific during July 2001. Examination of sediment samples collected on the eight survey station showed that there were 10 different types of meiobenthos. The most abundant meiobenthic animals were nematodes in all stations. Sarcomastigophorans, benthic harpacticoids were next abundant meiobenthos. Vertical distribution of meiobenthic animals showed the highest individual numbers in the surface sediment layers of 0-1 cm depth and showed more steep decreasing trend as sediment gets deeper on the stations of high latitude located in $16-17^{\circ}N$. Horizontal distribution of meiobenthic animal in the study area within CCFZ showed high densities of meiobenthos at the stations had few manganese nodules on their sediment surface in the site of low latitude. For size distribution analyses showed that animals which fit into the sieve mesh size of 0.063 mm were abundant.

Modeling of Suspended Sediment Transport Using Deep Neural Networks (심층 신경망 기법을 통한 부유사 이동 모델링)

  • Bong, Tae-Ho;Son, Young-Hwan;Kim, Kyu-Sun;Kim, Dong-Geun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.4
    • /
    • pp.83-91
    • /
    • 2018
  • Land reclamation, coastal construction, coastline extension and port construction, all of which involve dredging, are increasingly required to meet the growing economic and societal demands in the coastal zone. During the land reclamation, a portion of landfills are lost from the desired location due to a variety of causes, and therefore prediction of sediment transport is very important for economical and efficient land reclamation management. In this study, laboratory disposal tests were performed using an open channel, and suspended sediment transport was analyzed according to flow velocity and grain size. The relationships between the average and standard deviation of the deposition distance and the flow velocity were almost linear, and the relationships between the average and standard deviation of deposition distance and the grain size were found to have high non-linearity in the form of power law. The deposition distribution of sediments was demonstrated to have log-normal distributions regardless of the flow velocity. Based on the experimental results, modeling of suspended sediment transport was performed using deep neural network, one of deep learning techniques, and the deposition distribution was reproduced through log-normal distribution.

Vertical distribution of suspended sediment concentration - A case study in Cu Lao Dung Coastal Areas (Vietnam)

  • Tien H. Le Nguyen;Phuoc H. Vo Luong
    • Ocean Systems Engineering
    • /
    • v.13 no.3
    • /
    • pp.313-324
    • /
    • 2023
  • The vertical distribution of suspended sediments in the mangrove-mud coast is complicated due to the characterization of cohesive sediment properties, and the influence of hydrodynamic factors. In this study, the time-evolution of suspended sediment concentration (SSC) in water depth is simulated by a one-dimensional model. The model applies in-situ data measured in October 2014 at the outer station in Cu Lao Dung coastal areas, Soc Trang, Vietnam. In the model, parameters which have influence on vertical distribution of SSC include the settling velocity Ws and the diffusion coefficient Kz. The settling velocity depends on the cohesive sediment properties, and the diffusion coefficient depends on the wave-current dynamics. The settling velocity is determined by the settling column experiment in the laboratory, which is a constant of 1.8 × 10-4 ms-1. Two hydrodynamic conditions are simulated including a strong current condition and a strong wave condition. Both simulations show that the SSC near the bottom is much higher than ones at the surface due to higher turbulence at the bottom. At the bottom layer, the SSC is strongly influenced by the current.

Distribution of ATP in the Deep-Sea Sediment in the KODOS 97-2 Area, Northeast Equatorial Pacific Ocean (북동적도 태평양 KODOS 97-2 해역 심해저 퇴적물 내의 ATP 분포양상)

  • Hyun, Jung-Ho;Kim, Kyeong-Hong;Chi, Sang-Bum;Moon, Jai-Woon
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.3 no.3
    • /
    • pp.142-148
    • /
    • 1998
  • Environmental baseline information is necessary in order to assess the potential environmental impact of future manganese-nodule mining on the deep-seabed ecosystem. Total ATP (T-ATP), dissolved ATP (D-ATP) and particulate ATP (P-ATP) were measured to estimate total microbial biomass and to elucidate their vertical distribution patterns in the seabed of KODOS (Korea Deep Ocean Study) area, northeast equatorial Pacific Ocean. Within the upper 6 cm depth of sediment, the concentrations of T-ATP, D-ATP and P-ATP ranged from 4.4 to 40.6, from 0.6 to 16.1, and from 3.0 to 29.2 ng/g dry sediment, respectively. Approximately 84% of T-ATP, 81% of D-ATP, and 74% of P-ATP were present within the topmost 2 cm depth of sediment, and the distributions of ATP were well correlated with water content in the sediment. These results indicate that the distribution of total microbial biomass was largely determined by the supply of organic matter from surface water column. Fine-scale vertical variations of ATP were detected within 1-cm thick veneer of the sediment samples collected by multiple corer, while no apparent vertical changes were observed in the box-cored samples. It is evident that the box-core samples were disturbed extensively during sampling, which suggests that the multiple corer is a more appropriate sampling gear for measuring fine-scale vertical distribution pattern of ATP within thin sediment veneer. Overall results suggest that the concentrations of ATP, given their clear changes in vertical distribution pattern within 6 cm depth of sediment, are a suitable environmental baseline parameter in evaluating the variations of benthic microbial biomass that are likely to be caused by deep-seabed mining operation.

  • PDF

Prediction of Sediment distribution in Reservoir Using 2-D Numerical Model (2차원 수치모형을 이용한 저수지 내 퇴사분포 예측)

  • Kim, Ki Chul;Kim, Jong Hae;Chong, Koo-Yol;Kim, Hyeon Sik
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.8
    • /
    • pp.729-742
    • /
    • 2014
  • This study predicted long-term sediment distribution for 76 years by using RMA-2 which is two-dimensional numerical model and SED2D which is the sediment transport model to quantitatively analyze sediment distribution in the reservoir based on sediment intrusion and efficiently manage the reservoir. For water level-discharge-sediment data required in boundary conditions of the model, real-time data measured by the Korea Water Resources Corporation were used. The sediment input data was calculated using K-DRUM model. Sedimentation depth was compared with results of model by collecting cross-section core in the reservoir during the dry season. As the result of validation, the sediment depth in the reservoir was similar to actually measured value. For prediction of long-term sediment distribution, terrain data measured in 2012 was used as starting crosssection and simulations for 76 years until 2088 were made. As the results of simulations, sediment distributions of 1.63~1.26 m and 1.45~0.007 m were shown in upstream and downstream of Hapcheon Dam, respectively.

Seed Distribution and Burial Properties of Suaeda japonica in Tidal-flat (조간대 내에서 칠면초(Suaeda japonica) 종자의 분포 및 매토 특성)

  • Min, Byeong-Mee
    • The Korean Journal of Ecology
    • /
    • v.28 no.3
    • /
    • pp.141-147
    • /
    • 2005
  • To clarify seed distribution in sediment and its burial properties of Suaeda japonica, the vertical and horizontal distribution of seeds, organic content of sediment, and sediment content delivered by crabs were studied in mud tidal-flat of Walgot-dong, Siheung, Gyeonggi Province, from March 1999 to October 2000. The 94% and 6% of S. japonica seeds were buried under and outside the maternal plant crown, respectively. Organic matter contents of sediment were higher at the area (17%) covered than at the one (8%) uncovered by S. japonica. In the area covered by S. suaeda, organic matter profiles of sediment showed vertical variation from 19% in surface (1 cm depth) to 14% in 6 cm depth. S. japonica seeds buried in sediment decreased from 45% in 2 mm depth to 0% in 12 mm depth. The density of crabs was higher in the vegetated area than in the non-vegetated one. Especially, the density of Cleistostoma was about 8 times higher in the former than in the latter In the vegetated area, the amount of sediment delivered by crabs was estimated to be 2,409 $cm^3{\cdot}m^{-2}$, and this could ascend the height of sediment to 2.4 mm. Consequently, it might be interpreted that plant debris (organic matters) of maternal plants and sediment delivered by crabs made the S. japonica seeds bury well. By relationship between crab distribution and vegetation, it was thought that crabs got a benefit from S. japonica.