• Title/Summary/Keyword: secure correlation computation

Search Result 3, Processing Time 0.018 seconds

Secure Multi-Party Computation of Correlation Coefficients (상관계수의 안전한 다자간 계산)

  • Hong, Sun-Kyong;Kim, Sang-Pil;Lim, Hyo-Sang;Moon, Yang-Sae
    • Journal of KIISE
    • /
    • v.41 no.10
    • /
    • pp.799-809
    • /
    • 2014
  • In this paper, we address the problem of computing Pearson correlation coefficients and Spearman's rank correlation coefficients in a secure manner while data providers preserve privacy of their own data in distributed environment. For a data mining or data analysis in the distributed environment, data providers(data owners) need to share their original data with each other. However, the original data may often contain very sensitive information, and thus, data providers do not prefer to disclose their original data for preserving privacy. In this paper, we formally define the secure correlation computation, SCC in short, as the problem of computing correlation coefficients in the distributed computing environment while preserving the data privacy (i.e., not disclosing the sensitive data) of multiple data providers. We then present SCC solutions for Pearson and Spearman's correlation coefficients using secure scalar product. We show the correctness and secure property of the proposed solutions by presenting theorems and proving them formally. We also empirically show that the proposed solutions can be used for practical applications in the performance aspect.

Performance Evaluation of Secure Embedded Processor using FEC-Based Instruction-Level Correlation Technique (오류정정 부호 기반 명령어 연관성 기법을 적용한 임베디드 보안 프로세서의 성능평가)

  • Lee, Seung-Wook;Kwon, Soon-Gyu;Kim, Jong-Tae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.5B
    • /
    • pp.526-531
    • /
    • 2009
  • In this paper, we propose new novel technique (ILCT: Instruction-Level Correlation Technique) which can detect tempered instructions by software attacks or hardware attacks before their execution. In conventional works, due to both high complex computation of cipher process and low processing speed of cipher modules, existing secure processor architecture applying cipher technique can cause serious performance degradation. While, the secure processor architecture applying ILCT with FEC does not incur excessive performance decrease by complexity of computation and speed of tampering detection modules. According to experimental results, total memory overhead including parity are increased in average of 26.62%. Also, secure programs incur CPI degradation in average of $1.20%{\sim}1.97%$.

Secure Multiparty Computation of Principal Component Analysis (주성분 분석의 안전한 다자간 계산)

  • Kim, Sang-Pil;Lee, Sanghun;Gil, Myeong-Seon;Moon, Yang-Sae;Won, Hee-Sun
    • Journal of KIISE
    • /
    • v.42 no.7
    • /
    • pp.919-928
    • /
    • 2015
  • In recent years, many research efforts have been made on privacy-preserving data mining (PPDM) in data of large volume. In this paper, we propose a PPDM solution based on principal component analysis (PCA), which can be widely used in computing correlation among sensitive data sets. The general method of computing PCA is to collect all the data spread in multiple nodes into a single node before starting the PCA computation; however, this approach discloses sensitive data of individual nodes, involves a large amount of computation, and incurs large communication overheads. To solve the problem, in this paper, we present an efficient method that securely computes PCA without the need to collect all the data. The proposed method shares only limited information among individual nodes, but obtains the same result as that of the original PCA. In addition, we present a dimensionality reduction technique for the proposed method and use it to improve the performance of secure similar document detection. Finally, through various experiments, we show that the proposed method effectively and efficiently works in a large amount of multi-dimensional data.