• Title/Summary/Keyword: sectorial element

Search Result 5, Processing Time 0.017 seconds

A sectorial element based on Reissner plate theory

  • Akoz, A. Yalcin;Eratli, Nihal
    • Structural Engineering and Mechanics
    • /
    • v.9 no.6
    • /
    • pp.519-540
    • /
    • 2000
  • In this study, a new functional based on the Reissner theory, for thick plates on a Winkler foundation is obtained. This functional has geometric and dynamic boundary conditions. In deriving the new functional, the $G{\hat{a}}teaux$ differential is used. This functional which is in polar coordinates is also transformable into the classical potential energy equation. Bending and torsional moments, transverse shear forces, rotations and displacements are the basic unknowns of the functional. Two different sectorial elements are developed with $3{\times}8$ degrees of freedom (SEC24) and $4{\times}8$ degrees of freedom (SEC32). The accuracy of the SEC24 and SEC32 elements together are verified by applying the method to some problems taken from literature.

Flexural Vibration of Clamped and Simplv Supported Sectorial Plates with Combinations of Simply Supported and Free Radial Edges

  • Han, Bong-Ko;Kim, Joo-Woo
    • Nuclear Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.214-225
    • /
    • 1999
  • An accurate method is presented for flexural vibrations of sectorial plates having simply supported-free and free-free radial edges, when the circular edge is either clamped or simply supported. The classical Ritz method is employed with two sets of admissible functions assumed for the transverse vibratory displacements. These sets consist of : (1) mathematically complete algebraic-trigonometric polynomials which gurantee convergence to exact frequencies as sufficient terms are retained, and (2) comer functions which account for the bending moment singularities at re-entrant comer of the radial edges having arbitrary edge conditions. Accurate (at least four significant figures) frequencies and normalized contours of the transverse vibratory displacement are presented for the spectra of corner angles [90$^{\circ}$, 180$^{\circ}$(semi-circular), 270$^{\circ}$, 300$^{\circ}$, 330$^{\circ}$, 350$^{\circ}$, 355$^{\circ}$, 360$^{\circ}$ (complete circular)] causing a re-entrant comer of the radial edges. Future solutions drawn from alternative numerical procedures and finite element techniques may be compared with these accurate results.

  • PDF

Experimental study and numerical modeling of liquid sloshing damping in a cylindrical container with annular and sectorial baffles

  • Mohammadi, Mohammad Mahdi;Moosazadeh, Hamid
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.4
    • /
    • pp.349-366
    • /
    • 2022
  • The ability of baffles in increasing the sloshing damping is investigated in this study by theoretical, numerical, and experimental methods. Baffles Installed as separators in containers, can change the dynamic properties of sloshing. The main purpose of this study is to investigate the effect of baffle placement.The main purpose of this study is to investigate the effect of placing baffles in order to provide appropriate frequencies and damping and to present a practical baffle arrangement in the design ofsloshing. In this regard, an experimental setup is designed to study the fluid sloshing behavior and damping properties in cylindrical tanks filled up to an arbitrary depth. A new combination of annular and sectorial baffles is employed to evaluate fluid sloshing in the tank. The results show that the proposed baffle arrangement has a desired effect on the damping and fluid sloshing frequencies and optimally satisfies the anticipated design requirements. In addition, the theoretical frequencies exceed empirical frequencies at the points far from baffles, while at the points close to baffles, the empirical ones are higher than theoretical ones. Also, at the depths near the bottom of container sloshing frequencies are not affected by sectorial baffles, although the theoretical curve predicts a reduction in the fundamental frequency of sloshing. Finally, the results of finite volume and finite element methods which compared with experimental data, indicated a good agreement between different approaches.

Vibration of mitred and smooth pipe bends and their components

  • Redekop, D.;Chang, D.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.6
    • /
    • pp.747-763
    • /
    • 2009
  • In this work, the linear vibration characteristics of $90^{\circ}$ pipe bends and their cylindrical and toroidal shell components are studied. The finite element method, based on shear-deformation shell elements, is used to carry out a vibration analysis of metallic multiple $90^{\circ}$ mitred pipe bends. Single, double, and triple mitred bends are considered, as well as a smooth bend. Sample natural frequencies and mode shapes are given. To validate the procedure, comparison of the natural frequencies is made with existing results for cylindrical and toroidal shells. The influence of the multiplicity of the bend, the boundary conditions, and the various geometric parameters on the natural frequency is described. The differential quadrature method, based on classical shell theory, is used to study the vibration of components of these bends. Regression formulas are derived for cylindrical shells (straight pipes) with one or two oblique edges, and for sectorial toroidal shells (curved pipes, pipe elbows). Two types of support are considered for each case. The results given provide information about the vibration characteristics of pipe bends over a wide range of the geometric parameters.

Lateral load effects on tall shear wall structures of different height

  • Carpinteri, Alberto;Corrado, Mauro;Lacidogna, Giuseppe;Cammarano, Sandro
    • Structural Engineering and Mechanics
    • /
    • v.41 no.3
    • /
    • pp.313-337
    • /
    • 2012
  • A three-dimensional formulation is proposed to analyze the lateral loading distribution of external actions in high-rise buildings. The method is extended to encompass any combination of bracings, including bracings with open thin-walled cross-sections, which are analyzed in the framework of Timoshenko-Vlasov's theory of sectorial areas. More in detail, the proposed unified approach is a tool for the preliminary stages of structural design. It considers infinitely rigid floors in their own planes, and allows to better understand stress and strain distributions in the different bearing elements if compared to a finite element analysis. Numerical examples, describing the structural response of tall buildings characterized by bracings with different cross-section and height, show the effectiveness and flexibility of the proposed method. The accuracy of the results is investigated by a comparison with finite element solutions, in which the bracings are modelled as three-dimensional structures by means of shell elements.