• Title/Summary/Keyword: sectional force

Search Result 294, Processing Time 0.028 seconds

Strength Evaluation of Steel Box Beam-to-Column Connections with Axial Load (축방향 하중을 받는 강재 상자단면 보-기둥 접합부의 강도평가)

  • Hwang, Won Sup;Park, Moon Su;Kim, Young Pil
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.1
    • /
    • pp.117-127
    • /
    • 2007
  • In this study, we evaluate the strength of steel box beam-to-column connections subjected to axial loads in steel frame piers. The T-connection strength was reduced due to the column axial force in the two-story pier structure. To examine this phenomenon, non-linear FEM analysis was carried out and the analytical procedure was verified by comparing it with experimental results. To clarify the effect of the axial force and major design parameters in connection with strength, influence of panel zone width-thickness ratio, sectional area, and axial force was investigated using FEM analysis. Also, the theoretical strength equations were suggested by stress distribution of panel zone. The strength of the T-connection was compared with one of the one-story pier structure connections. As a result, the strength evaluation equations are proposed in consideration of the panel zone width-thickness ratio and sectional area ratio for the T-connections.

Kinematic characteristics of grip force in patients with cervical spondylosis

  • Lee, Bumsuk;Noguchi, Naoto;Kakiage, Daiki;Yamazaki, Tsuneo
    • Physical Therapy Rehabilitation Science
    • /
    • v.4 no.2
    • /
    • pp.61-65
    • /
    • 2015
  • Objective: The aim of this study was to objectively evaluate sensory disturbance in cervical spondylosis using grip force and investigate the relationship between the grip force and upper extremity function. Design: Cross-sectional study. Methods: Eleven cervical spondylosis patients with paresthesia conducted grip and lift tasks using a precision grip with the tips of the thumb and index finger on either side. The sum of the grip force used during the first four seconds was calculated and defined as the total grip force. The cutaneous pressure threshold of the fingers, the pinch power, the grip power and three subtests of the Simple Test for Evaluating Hand Function (STEF) were also assessed. Correlations between the total grip force and cutaneous pressure threshold, pinch power, grip power, and STEF subtest times were evaluated. Results: We found that the total grip force correlated with the cutaneous pressure threshold (p<0.05). Moreover, the total grip force of the dominant thumb correlated with the results of the three STEF subtests (p<0.05). There were no significant correlations between the total grip force and pinch/grip powers. Conclusions: We found that the total grip force correlated with cutaneous pressure threshold and upper extremity function. The results suggest that the total grip force could serve as an objective index for evaluating paresthesia in cervical spondylosis patients, and that the impaired ability of the upper extremity function is related to grip force coordination.

Study on Mechanical Properties of Rice Culm (벼줄기의 기계적(機械的) 특성(特性)에 관(關)한 연구(硏究))

  • Hur, Yun Kun;Lee, Sang Woo
    • Korean Journal of Agricultural Science
    • /
    • v.9 no.2
    • /
    • pp.569-575
    • /
    • 1982
  • Mechanical properties of rice plants were tested to determine compressive force, bending force, tensile force and shear force for improvement of harvesting machines and for efficient utilization of rice culm during the proper harvesting period. Rice varieties used in this study were two Japonica varieties with Irri 348 and Jinju, and two $Indica{\times}Japonica$ hybrids with Seogwang and Taebaeg, which were grown in the standard fertilization field of Chungnam Rural Development Office. Also Jinju and Taebaeg were tested to elucidate the shearing characteristics which included shear force-strain relationship, shear force and shear energy according to the position from the ground level, the shearing angle to the rice culm, and the moisture content. 1. Compressive force, bending force, tensile force and shear force were higher In Japonica varieties than $Indica{\times}Japonica$ hybrids. 2. Shear force to overall culm length decreased progressively to upper positions in Jinju variety but a constant shear force was approximately showed between the ground level and the position of 21cm in Taebaeg variety. 3. Shear force and shear energy increased with increase of the cross sectional area, and the rates of increase were high in general up to the cross sectional area of $10mm^2$ and then they became dull very much. 4. Shear force and shear energy decreased with decrease of moisture content of rice culm after cutting up to the moisture content of 60% (w. b.) and then they did not change significantly.

  • PDF

Analysis of Biomechanical Characteristics of Therapist's Ground Reaction and Contact Hand Force and Time According to Table Height During Spinal Manipulation

  • Jejeong Lee;Yongwoo Lee
    • Physical Therapy Rehabilitation Science
    • /
    • v.12 no.2
    • /
    • pp.130-139
    • /
    • 2023
  • Objective: This study aimed to analyze the effects and characteristics of the height of the treatment table on the force and time of ground reaction (GR) and contact hand (CH) generated from the therapist's feet to generate thrust during spinal manipulation (SM). Design: A cross-sectional survey study Methods: Thirty-six healthy subjects were recruited. SM was performed on the ilium using a knee-high table, where the therapist felt it was easy to control the subject's posture and body shape and comfortable to generate force, as well as a relatively high thigh-high table. The force and time generated by the therapist's GR and CH were simultaneously measured through a force plate. Results: As a result, there was a significant difference in peak force and rundown force at the therapist's GR according to the table height (p < 0.05). In the therapist's CH, there was a significant difference between PreMin (preload minimum) force and peak force (p < 0.05), and there was a significant difference between the time from PreMin to peak and the time of the entire section (p < 0.05). Conclusions: As a result, the generation of increased CH force and faster thrust duration were confirmed by mobilizing the reduced GR force of the therapist to generate thrust than the relatively high table on the knee-high table.

Lubrication Analysis of Hydraulic Spool Valve with Groove Cross Sectional Shapes (Groove 단면형상에 따른 유압 Spool Valve의 윤활해석)

  • Park, Tae-Jo;Hwang, Yun-Geon
    • Tribology and Lubricants
    • /
    • v.25 no.1
    • /
    • pp.13-19
    • /
    • 2009
  • The spools in most hydraulic spool type control valve have several circumferential grooves to pre-vent well known hydraulic locking problems which result in high friction force and excessive wear. In this paper, a commercial computational fluid dynamics (CFD) code, FLUENT is used to investigate the flow and lubrication characteristics of grooved hydraulic spool valve. The stream lines and pressure distributions are obtained for various groove cross sectional shapes and film thicknesses. The stream lines are highly affected by groove cross sectional shape but pressure distributions mainly depend on the film shape and its magnitude. Therefore the numerical method adopted in this paper and results can be use in designing of various grooved spool valve.

A Study on the Reaction Force Characteristics of the Gas Spring for the Automotive (자동차용 가스 스프링의 반력 특성에 관한 연구)

  • Lee, Choon Tae
    • Journal of Drive and Control
    • /
    • v.12 no.4
    • /
    • pp.35-40
    • /
    • 2015
  • A gas spring provides support force for lifting, positioning, lowering, and counterbalancing weights. It offers a wide range of reaction force with a flat force characteristic, simple mounting, compact size, speed controlled damping, and cushioned end motion. The most common usage is as a support on a horizontally hinged automotive tail gate. However, its versatility and ease of use has been applied in many other industrial applications ranging from office equipment to off-road vehicles. The cylinder of a gas spring is filled with compressed nitrogen gas, which is applied with equal pressure on both sides of the piston. The surface area of the rod side of the piston is smaller than the opposite side, producing a pushing force. The magnitude of the reaction force is determined by the cross-sectional area of the piston rod and the internal pressure inside the cylinder. The reaction force is influenced by many design parameters such as initial chamber volume, diameter ratio, etc. In this paper, we investigated the reaction force characteristics and carried out parameter sensitivity analysis for the design parameters of a gas spring.

THREE DIMENTIONAL FORCE ANALYSIS OF FORCE SYSTEM IN CONTINUOUS ARCHWIRE BY FINITE ELEMENT METHOD (CONTINUOUS ARCHWIRE의 FORCE SYSTEM에 대한 3차원 유한 요소법적 연구)

  • Row, Joon;Ryu, Young-Kyu
    • The korean journal of orthodontics
    • /
    • v.26 no.1 s.54
    • /
    • pp.17-32
    • /
    • 1996
  • It is important to understand the operating mechanism and force system of fixed appliance that most effective for individual tooth movement in various orthodontic appliances. The archwire system of fixed appliance is devided into 3 types, which is continuous arch, segmented arch and sectional arch. The last two types have longer interbracket distance and simple force operating points, so it is easy to control force system by operator. But the continuous arch has shorter interbracket distance and various bracket geometry, so it is hard to control and anaylze the force system. The purpose of this study was three dimentional force and moment analysis of continuous arch system by finite element method, which is similar situation to three dimentional elastic beam in structural engineering. Several sample form of various bracket geometry and artificial lower crowding typodont made by author were constructed, analyzed and compared each other. The results were as follows : 1. The force magnitude is linear proportional to the degree of displacement or tilting of the bracket. 2. The force magnitude is inversely non-linear proportional to the interbracket distance. 3. In three dimensional typodont model, while the force can be compared with that of the sample form in the area where adjacent bracket geometry is simple, the force is much more than the expected value in the area where adjacent bracket geometry is complex.

  • PDF

A Study on the Reduction of Spring Back for Precision Forming of Steam Generator Tube (증기발생기 전열관의 정밀성형을 위한 스프링 백 저감에 관한 연구)

  • Suh Y. S.;Kim Y. W.;Kim J. I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.102-105
    • /
    • 2001
  • The spring back taking place after the coiling process of steam generator tube leads to the dimensional inaccuracy. In order to reduce the spring back, tension force was applied to the one end of the tube during forming. In this work, parametric study using FEM was performed to find the appropriate magnitude of tension force. The force that induces minimum suing back was found by simultaneously taking account of suing back amount, cross-sectional ovality, and thickness of the tube wall after deformation. In addition, stress relieving by heat treatment was also simulated as an alternative to the former method. The latter was found to be more effective under the given constraints.

  • PDF

A Study on the Control of Spring Back for the Precision Forming of the Steam Generator Helical Tube (나선형 증기 발생기 튜브의 정밀성형을 위한 스프링백 제어 연구)

  • 서영성;김용완;김종인
    • Transactions of Materials Processing
    • /
    • v.11 no.3
    • /
    • pp.238-245
    • /
    • 2002
  • The spring back taking place after the coiling process of steam generator tube leads to the dimensional inaccuracy. In order to reduce the spring back, tension force was applied to the one end of the tube during forming. In this work, parametric study using FEM was performed to find the appropriate magnitude of tension force. The force that induces minimum spring back was found by simultaneously taking account if spring back amount, cross-sectional ovality, and thickness of the tube wall after deformation. In addition, stress relieving by heat treatment was also simulated as an alternative to the former method. The latter was found to be more effective under the given constraints.

Study on the Development of 3-axis Sensor for Robot (Robot용 3축 Force Sensor 개발에 관한 연구)

  • Choe, Dong-Yeop;Jeong, Yeon-Gyu
    • 한국기계연구소 소보
    • /
    • s.18
    • /
    • pp.67-74
    • /
    • 1988
  • The force sensor is essentially required in controlling robot manipulator in such applications as precise assembly of mechanical parts, deburring and polishing and various kinds of 6-axis force sensors are developed for these application. This paper presents the algorithm of horizontal assembly of circular cross-sectional workpiece using 3-axis force sensor and procedure to develop the sensor. The sensor is calibrated and tested using AID converter and 16 bit micro computer. The result is $\pm$0.03% FS of zero stability, 0.1%FS of linearity and $\pm$0.05% FS of resolution. The sensor will be used in the research of robot application such as assembly and deburring interfaced with micro computer based robot controller which is under development at the robotics lab.

  • PDF