• Title/Summary/Keyword: sectional area

Search Result 1,458, Processing Time 0.025 seconds

Experimental study on compression wave propagating in a sudden reduction duct (급축소관을 전파하는 압축파에 관한 실험적 연구)

  • Kim, Hui-Dong;Matsuo, Kazuyasu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.9
    • /
    • pp.1139-1148
    • /
    • 1997
  • Compression waves propagating in a high-speed railway tunnel develops large pressure fluctuations on the train body or tunnel structures. The pressure fluctuations would cause an ear discomfort for the passengers and increase the aerodynamic resistance of trains. As a fundamental research to resolve the pressure wave phenomenon in the tunnel, experiments were carried out by using a shock tube with an open end. A blockage to model trains inside the tunnel was installed on the lower wall of shock tube, thus forming a sudden cross-sectional area reduction. The compression waves were obtained by the fast opening gate valve instead of a conventional diaphragm of shock tube and measured by the flush mounted pressure transducers with a high sensitivity. The experimental results were compared with the previous theoretical analyses. The results show that the ratio of the reflected to the incident compression wave at the sudden cross-sectional area reduction increases but the ratio of the passing to the incident compression wave decreases, as the incident compression wave becomes stronger. This experimental results are in good agreements with the previous theoretical ones. The maximum pressure gradient of the compression wave abruptly increases but the width of the wave front does not vary, as it passes over the sudden cross-sectional area reduction.

Static behavior of Kiewitt6 suspendome

  • Li, Kena;Huang, Dahai
    • Structural Engineering and Mechanics
    • /
    • v.37 no.3
    • /
    • pp.309-320
    • /
    • 2011
  • As a new type of large-span space structure, suspendome is composited of the upper single-layer reticulated shell and the lower cable-strut system. It has better mechanical properties compared to single-layer reticulated shell, and the overall stiffness of suspendome structure increases greatly due to the prestress of cable. Consequently, it can cross a larger span reasonably, economically and grandly with high rigidity, good stability and simple construction. For a better assessment of the advantages of mechanical characteristic of suspendome quantitatively, the static behavior of Kiewitt6 suspendome was studied by using finite element method, and ADINA was the software application to implement the analysis. By studying a certain suspendome, the internal forces, deformation and support constrained forces of the structure were obtained in this paper. Furthermore, the influences of parameters including prestress, stay bar length, cross-sectional area and rise-to-span ratio were also discussed. The results show that the increase of prestress and vertical stay bar length can improve the stiffness of suspendome; Cross-sectional area has nearly no impact on the static behavior, and the rise-to-span ratio is the most sensitive parameter.

Estimation of Ship Resistance by Statistical Analysis and its Application to Hull Form Modification (통계해석에 의한 저항 추정 및 선형 개량)

  • S.W.,Hong;K.J.,Cho;D.S.,Yun;E.C.,Kim;W.C.,Jung
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.25 no.4
    • /
    • pp.28-38
    • /
    • 1988
  • This paper describes the statistical analysis method of predicting the ship resistance. The equation for the wavemaking resistance coefficient is derived as the principal dimensions and sectional area coefficients by using the wavemaking resistance theory and its regression coefficients are determined from the regression analysis of the resistance test results. The equation for the form factor is derived by purely regression analysis of the principal dimensions, sectional area coefficients and resistance test results. Also, it is shown that the wavemaking resistance can be minimize by varying the sectional area curve without changing the principal dimensions of the ship. This methods were applied to the resistance prediction of a bulk carrier. And the, the modified hull form with minimum wavemaking resistance was obtained and the reduction of effective power was confirmed by the resistance test.

  • PDF

Pressure Measurement in Carpal Tunnel Syndrome : Correlation with Electrodiagnostic and Ultrasonographic Findings

  • Ahn, Seong-Yeol;Hong, Youn-Ho;Koh, Young-Hwan;Chung, Yeong-Seob;Lee, Sang-Hyung;Yang, Hee-Jin
    • Journal of Korean Neurosurgical Society
    • /
    • v.46 no.3
    • /
    • pp.199-204
    • /
    • 2009
  • Objective : This study was done to evaluate the correlation between carpal tunnel pressure (CTP), electrodiagnostic and ultrasonographic findings in patients with carpal tunnel syndrome (CTS). Methods : CTP was measured during endoscopic carpal tunnel release (ECTR) for CTS using Spiegelberg ICP monitoring device with parenchymal type catheter. Neurophysiologic severity and nerve cross sectional area were evaluated using nerve conductive study and ultrasonography (USG) before ECTR in all patients. Results : Tests were performed in a total of 48 wrists in 39 patients (9 cases bilateral). Maximum CTP was $56.7{\pm}19.3$ mmHg ($Mean{\pm}SD$) and $7.4{\pm}3.3$ mmHg before and after ECTR, respectively. No correlation was found between maximum CTP and either neurophysiologic severity or nerve cross sectional area, whereas we found a significant correlation between the latter two parameters. Conclusion : CTP was not correlated with neurophysiologic severity and nerve cross sectional area. Dynamic, rather than static, pressure in carpal tunnel might account for the basic pathophysiology of CTS better.

Effect of intermittent low-intensity, short duration exercise on Type IImuscle of suspended rats (간헐적인 낮은강도, 짧은기간의 운동부하가 뒷다리 부유쥐의 Type II근육에 미치는 영향)

  • 최명애;지제근;김은희
    • Journal of Korean Academy of Nursing
    • /
    • v.25 no.2
    • /
    • pp.193-209
    • /
    • 1995
  • The purpose of this study was to determine the effect of intermittent low - intensity, short duration exercise during hindlimb suspension on the mass, relative weight, myofibrillar protein content, cross-sectional area of Type I and Type II fibers and SDH activity in Type II(plantaris) muscle. To examine the effectiveness of intermittent low-intensity, short duration exercise on mass, myofibrillar protein content and fiber size, the hindlimbs of adult female Wistar rats were suspended(HS) and half of these rats walked on a treadmill for 45 min/day(9 min every 2h) at 5m /min and a 15$^{\circ}$grade (HS-EX). Plantaris wet weight was 19.67% significantly smaller(p<0.005) and relative plantaris weight was 6.25% smaller compared with those of control rats following seven days of hindlimb suspension. Plantaris wet weight and relative plantaris weight increased by 27.66%, 12.22% each through intermit-tent exercise during hindlimb suspension(p<0.005, p<0.05), moreover, plantaris wet weight and relative plantaris weight of the HS-EX rats were similar to those of control rats. Soleus wet weight and relative soleus weight decreased significantly by 31% and 22.0% in the HS rats(p<0.05). Soleus wet weight and relative soleus weight increased by 10.41%, 25.64% respectively through intermittent ex-ercise during hindlimb suspension, furthermore, soleus wet weight and relative weight of the HS-EX rats were closer to those of control rats. Myofibrillar protein content of plantaris and soleus decreased significantly by 51.49%, 59.65% each, following seven days of hindlimb suspension (p<0.005) Myofibrillar protein content of plantaris and soleus increased by 51.79%, 75.47% each with significance through intermittent exercise during hindlimb suspension(p<0.005). Myofibrillar protein content of plantaris and soleus in HS-EX rats was smaller than that of control rats. No change was observed in fiber type percentage following 1 week of hindlimb suspension or exercise during hindlimb suspension. The type I fiber cross-sectional area of both soleus and plantaris muscle was 18.72% and 41.07% lower in the HS than that of the controls (p<0.05, p<.001), that of both muscles was 6.60% and 29. 3% greater in the HS-EX than that of the HS rats. HS plus intermittent low- intensity short duration exercise resulted in Type I fiber cross-sectional area closer to the controls. Type II fiber cross-sectional area of both plantaris and soleus muscle was 22.45% and 22.58% sl nailer in the HS than in the controls, that of both muschles in the HS-EX was 14.10%, 5.78% greater than HS. Intermittent exercise during hindlimb suspension resulted in Type I, II fiber cross-sectional area closer to the control value. There was no change in SDH activity following 1week of hindlimb suspension or exercise during hindlimb suspension in the plantaris muscle. The results suggest that intermittent low intensity short duration exercise can ameliorate Type II muscular atrophy Induced by hindlimb suspension.

  • PDF

Analysis of Local Correlation between Shear Wave Velocity and Geo-layer in Korea (국내 지역성을 고려한 전단파속도와 대표지층의 상관관계 분석)

  • Kim, Han-Saem;Choi, Seung-Ho;Chung, Choong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.687-698
    • /
    • 2010
  • Borehole drilled depend on the point is bound to be limited to obtain the 2-D or 3-D layer information for entire targer area. On the other hand, SASW and MASW provide the sectional form of layer information through the shear wave velocity($V_s$). Therefore the useful information of the target area can be derived from SASW, MASW and borehole data. In this research, the correlation reflected locality and nationwide between sectional geo-layer and $V_s$ was investigated and analyzed. The target areas are westside of Pyeongtaek and Incheon. The shear wave velocity($V_s$) obtained from SASW, MASW and borehole data conducted within the scope of crossline for survey was utilized in each region. In the 2D distribution of $V_s$ from SASW, MASW, $V_s$ tend to continually increase deeper and deeper. By the target area, the depth of each representative geo-layer was nested on the sectional distribution map of $V_s$ to suggest the range of $V_s$ in accordance of strata by using borehole data. The 2D sectional geo-layer distribution map is presented based on the range of $V_s$. In addition the correlation between measured and calculated $V_s$ according to the empirical equation was analyzed.

  • PDF

Hindlimb Muscle Atrophy of Rat Induced by Neuropathic Pain (말초신경 손상에 의한 신경병증성 통증으로 유발된 쥐 뒷다리근 위축)

  • Choe, Myoung-Ae;Kim, Kyung-Hwa;An, Gyeong-Ju;Lee, Kyung-Sook;Choi, Jung-An
    • Journal of Korean Biological Nursing Science
    • /
    • v.10 no.1
    • /
    • pp.88-95
    • /
    • 2008
  • Purpose: The purpose of this study was to examine the effect of neuropathic pain by peripheral nerve injury on mass and Type I and II fiber cross-sectional areas on hindlimb muscles of the neuropathic pain model rat. Method: Adult male Sprague-Dawley rats (body weight 200-220 g) were assigned to one of two groups: a neuropathic pain group (n=7) that had a ligation of the left L5 spinal nerve, a control group (n=5), a naive rat without any procedures. Withdrawal threshold, activity, body weight and food intake were measured daily. At 8 days after neuropathic pain, all rats were anesthetized and the soleus and plantaris muscles were dissected from the both hindlimbs. Body weight, food intake, muscle weight and Type I and II fiber cross-sectional area of the dissected muscles were determined. Result: The neuropathic pain group showed a significant decreases (p<.05) as compared with the control rats, in diet intake, body weight, muscle weight and Type II fiber cross-sectional area of the left (affected side) soleus and plantaris muscles, and the right (unaffected side) muscle weight of plantaris and Type II fiber cross-sectional area of the soleus muscle. Conclusion: The hindlimb muscle atrophy occurs in both affected and unaffected side due to neuropathic pain by the peripheral nerve injury. The hindlimb muscle atrophy of the affected side is more pronounced than that of the unaffected side.

  • PDF

Analysis of Internal Overpressure by Pipe Cross-Sectional Area Ratio and Filling Rate in the Hydraulic Test of Shipboard Tank (수압시험 시 관 단면적 비 및 충수 속도별 탱크 내부 과압 발생에 관한 해석)

  • Geun-Gon Kim;Tak-Kee Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.6
    • /
    • pp.460-472
    • /
    • 2023
  • This study was conducted based on the case of an accident (excessive deformation) that occurred during the hydraulic test of a shipboard tank manufactured in accordance with the design regulations. Over-pressure phenomenon was noted as the main cause of accidents in the process of testing tanks without physical damage, which can be found in external factors such as cross-sectional difference between inlet pipe and air pipe and higher water filling rate than the recommended one. The main goal of this paper is to establish a safe water filling rate according to the range of sectional area ratio(SAR) reduced below the regulations for each test situation. The simulation was conducted in accordance with the hydraulic test procedure specified in the Ship Safety Act, and the main situation was divided into two types: filling the tank with water and increasing the water head to the test pressure. The structural safety evaluation of the pressure generated inside the tank and the effect on the structure during the test was reviewed according to the SAR range. Based on the results, guidelines for the optimal filling rate applicable according to SAR during the hydraulic test were presented for the shipboard tanks used in this study.

Prediction Model of the Exit Cross Scetional Shape in Round-Oval -round Pass Rolling

  • Lee, Young seog;Gert Goldhahn
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.1
    • /
    • pp.87-93
    • /
    • 2001
  • A reliable analytic model that determines the exit cross sectional shape a workpiece(material) in round-oval (oroval-round) pass sequence has been developed. The exit cross sectional shape of an outgoing workpiece is predicted by using the linear interpolation of the radius of curvature of an incoming workpiece and that of roll groovw to the roll axis direction. The requirements placed on the choice of the weighting function were to ensure boundary conditions specified. The validity of the analytic model has been examined by not rod rolling experiment with the roll gap and specimen size changed. The exit cross sectional shape and area of the workpiece predicted by the proposed analytic model were good agreement with those obtained experimentally. We found that the analytic model has not only simplicity and accuracy for practical usage but also save a large amount of computational time compared with finite element method.

  • PDF

Prediction of Stress Free Surface Profile of Wrokpiece in Rod Rolling Process (선재압연공정의 소재 자유표면 형상예측)

  • Lee, Youngseog;Kim, Young-Ho;Jin, Young-Eun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.9
    • /
    • pp.174-180
    • /
    • 2000
  • A reliable analytic model that determines the cross sectional shape of a workpiece(material) in round-oval(or oval-round) pass sequence has been developed. the cross sectional shape of an outgoing workpiece is predicted by using the linear interpolation of the radius of curvature of an incoming workpiece and that of roll groove to the roll axis direction. The requirements we placed on the choice of the weighting function were to ensure boundary conditions specified. The validity of the analytic model has been examined by hot rod rolling experiment with the roll gap and specimen size changed. The cross sectional shape and area of a workpiece predicted by the proposed analytic model were good agreement with those obtained experimentally. It was found that the analytic model has not only simplicity and accuracy for practical usage but also save a large amount of computational time compared with finite element method.

  • PDF