• Title/Summary/Keyword: section property

Search Result 349, Processing Time 0.025 seconds

Assessment of Absorption Property for Five Species According to Soaking Conditions for Manufacturing a Cask for Ripening Traditional Liquor

  • Park, Han-Min;Byeon, Hee-Seop
    • Journal of the Korea Furniture Society
    • /
    • v.19 no.6
    • /
    • pp.420-427
    • /
    • 2008
  • To study the suitability of chestnut as a cask for ripening traditional liquors, the absorption property for pure water, liquor with 30% alcohol content and ethanol with 95% alcohol content were investigated for five species. Oriental oak had the greatest amount of liquid absorption while chestnut had the smallest amount. The absorption amount linearly increased with increasing soaking time. The absorption amounts for each section were greatest in RT plane, and the difference between LR plane and LT plane was very small for all soaking conditions. The anisotropy of absorption amount for five species was greatest in Japanese cedar and was smallest in white mulberry on the whole. And the change of absorption amounts according to soaking conditions tended to decrease in softwoods and increase in hardwoods, and the difference among wood species was not clear. From this result, it was found that chestnut with a small absorption amount, regarding of soaking behavior, was a good material as a cask for ripening traditional liquors, whereas small diameter oriental oak with a great absorption amount was not suitable in this purpose.

  • PDF

Thermal Characteristics of Epoxy-Nanocomposites filled Several Types Nano Layered Silicate Particles (나노층상실리케이트가 충진된 에폭시-나노콤포지트의 열적특성 연구)

  • Park, Jae-Jun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.8
    • /
    • pp.749-754
    • /
    • 2008
  • A large number of studies on the various characteristics of epoxy-layered silicate nanocomposites, such as electric and mechanical, morphology have been conducted and contributed to improve their characteristics. However, studies on the effects of its thermal conductivities in the thermal properties are not enough, even though there are some excellent evaluations for its insulation performances. Thermal properties will cause thermal degradation and significantly affect the reliability of these epoxy-layered silicate nanocomposites. In the results of the analysis of epoxy-layered silicate nanocomposites $T_g$ for various types of organoclays (10A, 15A, 20A, 30B, and 93A), it showed an excellent thermal property of 10A. Also, it represented low values in storage modulus and mechanical Tan (Delta) at a high temperature section 140$^{\circ}C$ and excellent thermal properties due to its movement to the high temperature section in the case of the property of 10A in the measurement of DMA elastics and mechanical losses. In the results of the measurement of thermal conductivities, power ultrasonic applications represented a significant increase in thermal conductivities in the case of the applications of power ultrasonic and planetary centrifugal mixers. Based on these results, it is necessary to perform related studies because it can be applied as useful materials for future power facilities applications in mold and impregnate insulation.

A Evaluation of Fire Behavior According to Member Thickness of Precast Prestressed Hollow Core Slab of Fire Resistance Section (프리캐스트 프리스트레스트 내화단면 중공슬래브의 부재두께에 따른 화재거동평가 )

  • Yoon-Seob Boo;Kyu-Woong Bae;Sang-Min Shin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2023
  • At construction sites, interest in the production of precast materials is increasing due to off-site conditions due to changes in construction site conditions due to increased labor costs and the Act on the Punishment of Serious Accidents. In particular, the precast prestressed hollow slab has a hollow shape in the cross section, so structural performance is secured by reducing weight and controlling deflection through stranded wires. With the application of structural standards, the urgency of securing fire resistance performance is emerging. In this study, a fire-resistance cross section was developed by reducing the concrete filling rate in the cross section and improving the upper and lower flange shapes by optimizing the hollow shape in the cross section of the slab to have the same or better structural performance and economic efficiency compared to the existing hollow slab. The PC hollow slab to which this was applied was subjected to a two-hour fire resistance test using the cross-sectional thickness as a variable, and as a result of the test, fire resistance performance (load bearing capacity, heat shielding property, flame retardance property) was secured. Based on the experimental results, it is determined that fire resistance modeling can be established through numerical analysis simulation, and prediction of fire resistance analysis is possible according to the change of the cross-sectional shape in the future.

PROLONG THE SERVICE LIFE OF SWITCH RAIL BY IMPROVED INDUCTION HEAT TREATMENT

  • Zhan, Xinwei;Wang, Shuqing
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1946-1950
    • /
    • 2007
  • Switch rail is a very important part on the railway track, which not only accounts for the safety of the passing trains but also greatly influences the speed of the train. The higher the speed and the loads of the train the more it demands on the properties of the switch rail. Research shows that the higher mechanical properties of switch rail the longer the service life. Induction heat treatment is a good way of improving the mechanical properties of metallic materials. But the switch rail's section area changes gradually across the lengthways, which is difficult for induction heating especially for the small section. And the mechanical property of small section of the switch rail is the most important for its service life. The induction heat treatment used past always brings the low hardness on small section which can cause low service life of switch for wearing, or too high hardness because of martensite microstructure which can cause the shelling or even breaking of the switch rail. To prolong the service life of switch rail by higher mechanical properties, we researched the improved induction heat treatment for switch rail by adjusting speed of heating, and adopting compressed air cooling. The results showed that switch rail obtain almost the same high hardness across the length way after the improved induction heat treatment, which is very helpful to extend the service life of switch rail.

  • PDF

Effect Analysis on the Location of Automated Speed Enforcement System in Highway (고속도로 고정식 과속단속시스템 설치위치별 효과분석)

  • Park, Je-Jin;Kim, Joong-Hyo;Park, Tae-Hoon;Ha, Tae-Jun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.6 no.1 s.12
    • /
    • pp.27-37
    • /
    • 2007
  • The automatic speed enforcement system is expected to play an important role as intelligent transport system (ITS) or advanced franc management system (ATMS). It must be a reliable system checking the overspeedy vehicles automatically, while savine the police manpower and ensuring a safe traffic flow. In terms of traffic engineering, the automatic speed enforcement system may serve to improve driver's violent behaviors, facilitate the smooth and safe traffic flow and thereby, reduce the traffic accident. This study was aimed at analyzing the accident before and after installation of the automatic speed enforcement systems at the frequency, EPDO(equivalent property damage only) and accident cost, analyzing the effects of the automatic system on the traffic flow and accident. As a result, when we equip the automatic speed enforcement system on the downward slope section or after middle section comparing with whole section. We should consider the location of automatic speed enforcement system.

  • PDF

A study on the Relation between Strain & Conductivity of the Printed Pattern in Post-Printing Section of Roll to Roll process (롤투롤 공정의 인쇄 후 구간에서 변형률과 인쇄한 패턴의 전기 전도도와의 관계에 대한 연구)

  • Choi, Jae-Ho;Lee, Chang-Woo;Shin, Kee-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.9
    • /
    • pp.877-880
    • /
    • 2009
  • A curing process in post-printing section of R2R process is required for an electrical property of the printed pattern when devices such as RFID, Solar cell are printed. PEN as well as heat-stabilized PET which is used as a plastic substrate would be deformed at high temperature due to change of its elastic modulus. And crack in the printed pattern, which is on the plastic substrate is occurred due to the deformation of the substrate. The occurrence of crack causes electrical resistance to increase and the quality of the device to deteriorate. In case of RFID antenna, the range of reading distance is shortened as the electrical resistance of the antenna is increased. Therefore, the deformation of the plastic substrate, which causes the occurrence of crack, should be minimized by setting up low operating tension in R2R process. In low tension, slippage between a moving substrate and a roller would be generated when the operating speed is increased. And scratch would be occurred when slippage is generated due to an air entrainment, which is related to the thickness of the air film. The thickness of the air film is increased when operating speed is increased as shown by simulation based on mathematical model. The occurrence of scratch in conductive pattern printed by roll to roll process is a critical damage because it causes degradation or failure of electrical property of it.

Study on Section Properties of Asymmetric-Sectioned Vessels (선박의 비대칭 단면 특성에 대한 연구)

  • Choung, Joon-Mo;Kim, Young-Hun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.6
    • /
    • pp.843-849
    • /
    • 2010
  • This paper presents definition of symmetry of a ship section where three symmetries are proposed: material, geometric, and load symmetries. Precise terminologies of centroid, moment plane, and neutral axis plane are also defined. It is suggested that force vector equilibrium as well as force equilibrium are necessary condition to determine new position of neutral axis due to translational and rotational mobility. It is also stated that new reference datum of ENMP(elastic neutral moment plane), PNMP(fully plastic moment plane), ENAP(elastic neutral axis plane), and INAP(inelastic neutral moment plane) are required to define asymmetric section properties such as second moment of area, elastic section modulus, yield moment, fully plastic moment, and ultimate moment. Since collision-induced damage and flooding-induced biaxial bending moment produce typical asymmetry of section, the section properties are calculated for a typical VLCC. Geometry asymmetry is determined from ABS and DNV rules and two moment planes of 0/30 degs are assumed for load asymmetry. It is proved that the property reduction ratios directly calculated from second moment of area are usually larger than area reduction ratio. Reduction ratio of ultimate moment capacity shows almost linearly proportional to area reduction ratio. Mobility of elastic and inelastic neutral axis planes is visually provided.

Evaluation of Spalling Property and Water Vapor Pressure of Concrete with Heating Rate (가열 속도에 따른 콘크리트의 폭렬 특성 및 내부 수증기압력 평가)

  • Choe, Gyeong-Cheol;Lee, Tae-Gyu;Nam, Jeong-Soo;Park, Byung-Keun;Kim, Gyu-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.5
    • /
    • pp.605-612
    • /
    • 2012
  • Spalling of concrete occurs due to vapor pressure ignited explosion, temperature difference across a section, and combination of these factors. Factors affecting spalling can be classified into internal and external factors such as material property and environmental condition, respectively, have to be considered to precisely understand spalling behavior. An external environmental factor such as differences in heating rate cause internal humidity cohesion and different vapor pressure behavior. Therefore, spalling property, vapor pressure and thermal strain property were measured from concrete with compressive strengths of 30 MPa, 50 MPa, 70 MPa, 90 MPa, and 110 MPa, applied with ISO-834 standard heating curve of $1^{\circ}C/min$ heating rate. The experimental results showed that spalling occurred when rapid heating condition was applied. Also, when concrete strength was higher, the more cross section loss from spalling occurred. Also, spalling property is influenced by first pressure cancellation effect of thermal expansion caused by vapor pressure and heating rates.

A study of Chinese fashion design copyright protection cases - Highlighting infringement cases involving the intellectual property rights of Bai Yi Bei in 2023 - (중국 패션디자인 저작권 보호 판례 고찰 - 2023년 백일배(百一杯) 지식재산권 판례를 중심으로 -)

  • Yueding Zhou;Hyunzin Ko
    • The Research Journal of the Costume Culture
    • /
    • v.32 no.2
    • /
    • pp.287-298
    • /
    • 2024
  • Clothing is intimately intertwined with daily lives as every individual relies on it. The pervasive issue of plagiarism in the fashion industry has led to an increased demand to protect intellectual property rights. Currently, studies on the protection of fashion design intellectual property rights in China remain in the exploratory stage and warrant further investigation. This paper addresses the issue in two parts. The first part contains an analysis of the theoretical foundation for the protection of fashion design copyrights. It is further divided into three subsections. The first subsection primarily examines the concept of copyrights and laws. The second subsection focuses on the concept of fashion design copyrights and laws. The third subsection analyzes copyright laws concerning fashion designs in China. The second section offers an analysis of infringement cases involving fashion designs published during the Baiyi Cup Intellectual Property Case Summary Writing Competition held in China in 2023. It outlines the shortcomings of the current Chinese copyright laws regarding the protection of fashion designs, and proposes measures for improvement. This study argues that the institutional framework for intellectual property rights in the Chinese fashion industry should align with practical considerations and explores suitable legal regulations and how they relate to specific circumstances in China. Besides refining the legal framework, fashion designers and enterprises must take measures to entablish the intellectual property rights of their clothing brands.

Structural Analysis on the Heavy Duty Diesel Engine with Compacted Graphite Iron (CGI를 이용한 대형 디젤엔진의 구조해석)

  • Lee, Jae-Ok;Lee, Young-Shin;Lee, Hyun-Seung;Kim, Jae-Hoon;Jun, Joon-Tak;Kim, Chul-Goo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.602-607
    • /
    • 2007
  • The heavy duty diesel engine must have a large output for maintaining excellent mobility. The compacted graphite iron (CGI) is a material currently under study for the engine demanded for high torque, durability, stiffness and fatigue. In this study, three dimensional finite element model of a heavy-duty diesel engine was developed to conduct the stress analysis by using property of CGI. The FE model of the heavy duty diesel engine section consisting with four half cylinder was selected. The heavy duty diesel engine section include cylinder block, cylinder head, liner, bearing cap, bearing and bolt. The loading conditions of engine are pre-fit load, assembly force and gas force.

  • PDF