• 제목/요약/키워드: secretory pathway

검색결과 56건 처리시간 0.027초

An Efficient Secretion of Type I Secretion Pathway-Dependent Lipase, TliA, in Escherichia coli: Effect of Relative Expression Levels and Timing of Passenger Protein and ABC Transporter

  • Eom Gyeong-Tae;Rhee Joon-Shick;Song Jae-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권9호
    • /
    • pp.1422-1428
    • /
    • 2006
  • An ABC transporter apparatus of the Gram-negative bacterial type I secretion pathway can be used as a secretory protein expression system in Escherichia coli. Four types of coexpression systems for the Pseudomonas fluorescens lipase gene, tliA, and its cognate ABC transporter gene cluster, tliDEF, were constructed. When the relative expression levels were changed by adding different concentrations of IPTG, the secretion (16.9 U/ml of culture) of TliA in E. coli [pTliDEFA-223+pACYC184] was significantly higher than E. coli [pKK223-3+pTliDEFA-184] secreting the lowest level of TliA (5.2 U/ml of culture). Maximal accumulation of the lipase secreted occurred in the mid-exponential phase, implying that the efficient protein secretion via an ABC transporter was restricted only to actively growing cells. Finally, the secretion level of TliA in E. coli [pTliDEFA-223+pACYC184] was increased to 26.4 U/ml by inducing gene expression at the culture initiation time. These results indicate that a significant increase in the ABC transporter-dependent protein secretion can be achieved by simply controlling the relative expression levels between the ABC transporter and its passenger protein, even in the recombinant E. coli cells.

Isolation and characterization of a protease deficient mutant of Aspergillus niger

  • 정혜종;이미애;박승문;김대혁
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2001년도 추계학술발표대회
    • /
    • pp.89-92
    • /
    • 2001
  • Aspergillus niger has been used as a host system to express many heterologous proteins. It has various advantages over other expression systems in that it is a small eukaryotic GRAS (Generally Recognized aS Safe) organism with a capacity of secreting large amount of foreign proteins. However, it has been known that the presence of an abundant protease is a limiting factor to express a heterologous protein. The proteases deficient mutants of A. niger were obtained using UV -mutagenesis. A total of 1 ${\times}$ $10^5$ spores were irradiated with 10-20% survival dose of UV, 600J/M2 at 280nm, and the resulting spores were screened on the casein -gelatin plates. Ten putative protease deficient mutants were further analyzed on the starch plates to differentiate the pro from the secretory mutant. An endogenous extracellular enzyme, glucose oxidase, was also examined to confirm that the mutant phenotype was due to the proteases deficiency rather than the mutation in the secretory pathway. The reduced proteolytic activity was measured using SDS-fibrin zymography gel, casein degradation assay, and bio-activity of a supplemented hGM -CSF (human Granulocyte-Macrophage Colony Stimulating Factor). Comparing with the wild type strain, less than 30 % of proteolytic activity was observed in the culture filtrate of the protease deficient mutant (pro -20) without any notable changes in cell growth and secretion.

  • PDF

Investigation of post-translational modification of the secreted protein expressed in insect cell lines using baculovirus expression vector system(BEVS)

  • Yun, Eun-Young;Goo, Tae-Won;Kim, Sung-Wan;Park, Kwang-Ho;Hwang, Jae-Sam;Kang, Seok-Woo;Kwon, O-Yu
    • 한국잠사학회:학술대회논문집
    • /
    • 한국잠사학회 2003년도 제46회 춘계 학술연구 발표회
    • /
    • pp.82-83
    • /
    • 2003
  • In previous experiment, we reported when the heterologous protein is expressed by using baculovirus expression vector system (BEVS), although the amount of intracellular protein is abundant, the amount of extracellular Protein is poor. As the link in the chain of the research, we investigated the secretory pathway, important in case of the secretory protein, of the protein expressed in insect cells using BEVS. (omitted)

  • PDF

Inhibitory effects of antithrombin on the expression of secretory group IIA phospholipase A2 in endothelial cells

  • Kim, Tae-Hoon;Bae, Jong-Sup
    • BMB Reports
    • /
    • 제43권9호
    • /
    • pp.604-608
    • /
    • 2010
  • Tumor necrosis factor-$\alpha$ (TNF-$\alpha$) mediates proinflammatory responses in primary human umbilical vein endothelial cells (HUVECs), and it upregulates the expression of secretory group IIA phospholipase $A_2$ ($sPLA_2$-IIA). $sPLA_2$-IIA plays a pivotal role in inflammation, and antithrombin (AT) possesses properties that are beneficial to endothelial cells. Therefore, we investigated the effects of AT on the expression of $sPLA_2$-IIA in TNF-$\alpha$-stimulated HUVECs. TNF-$\alpha$ potently upregulated the expression of $sPLA_2$-IIA, and prior treatment of cells with AT inhibited the expression of $sPLA_2$-IIA in HUVECs. Also, antibodies or siRNA for syndecan-4 blocked the protective effect of AT. Furthermore, PI3-kinase and the AKT pathway are significantly involved in the AT-mediated inhibition of the expression of $sPLA_2$-IIA. These results show that AT effectively suppresses the upregulated $sPLA_2$-IIA expression, which might contribute to the cytoprotective effects of AT in the treatment of severe inflammatory diseases.

누에 배양세포로부터 분리한 Protein Disulfide Isomerase 유전자의 발현 특성 (Molecular Characterization of a Bombyx mori Protein Disulfide Isomerase(bPDI))

  • 구태원;윤은영;황재삼;강석우;권오유
    • 생명과학회지
    • /
    • 제11권5호
    • /
    • pp.415-422
    • /
    • 2001
  • Many secreted proteins have disulfide bonds that are important for their structure and function. Protein disulfide isomerase (PDI, EC 5.3.1.4.), an enzyme that catalyzes the formation and rearrangement of thiol/disulfide exchange reactions, is a resident of the endoplasmic reticulum (ER). The subcellular localization and its function as catalyst of disulfide bond formation in the biosynthesis of secretory and cell membrane proteins suggest that PDI plays a key role in the secretory pathway. We have isolated a cDNA encoding protein disulfide isomerase from Bombyx mori(bPDI). It has been characterized under ER stress conditions (dominantly induced by calcium ionophore A23187, tunicamycin and DTT), which is known to cause an accumulation of unfolded proteins in the ER. Furthermore, It has also been examined for tissue distribution(pronounced at the fat body), hormonal regulation (juvenile hormone, insulin and juvenile +transferrin; however, it is not effected by transferrin alone), and the effect of exogenous bacteria (peak at 16 h after infection) on the bPDI mRNA expression. The results suggest that bPDI is a member of the ER stress protein group, and it may play an important role in exogenous bacterial infection in fat body, and that homones regulate its expression.

  • PDF

Synaptotagmin 5 Controls SYP132-VAMP721/722 Interaction for Arabidopsis Immunity to Pseudomonas syringae pv tomato DC3000

  • Kim, Soohong;Kim, Hyeran;Park, Keunchun;Cho, Da Jeong;Kim, Mi Kyung;Kwon, Chian;Yun, Hye Sup
    • Molecules and Cells
    • /
    • 제44권9호
    • /
    • pp.670-679
    • /
    • 2021
  • Vesicle-associated membrane proteins 721 and 722 (VAMP721/722) are secretory vesicle-localized arginine-conserved soluble N-ethylmaleimide-sensitive factor attachment protein receptors (R-SNAREs) to drive exocytosis in plants. They are involved in diverse physiological processes in plants by interacting with distinct plasma membrane (PM) syntaxins. Here, we show that synaptotagmin 5 (SYT5) is involved in plant defense against Pseudomonas syringae pv tomato (Pst) DC3000 by regulating SYP132-VAMP721/722 interactions. Calcium-dependent stimulation of in vitro SYP132-VAMP722 interaction by SYT5 and reduced in vivo SYP132-VAMP721/722 interaction in syt5 plants suggest that SYT5 regulates the interaction between SYP132 and VAMP721/722. We interestingly found that disease resistance to Pst DC3000 bacterium but not to Erysiphe pisi fungus is compromised in syt5 plants. Since SYP132 plays an immune function to bacteria, elevated growth of surface-inoculated Pst DC3000 in VAMP721/722-deficient plants suggests that SYT5 contributes to plant immunity to Pst DC3000 by promoting the SYP132-VAMP721/722 immune secretory pathway.

Mechanism of Leptin-Induced Potentiation of Catecholamine Secretion Evoked by Cholinergic Stimulation in the Rat Adrenal Medulla

  • Lim, Dong-Yoon;Choi, Deok-Ho;Kang, Moo-Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제8권4호
    • /
    • pp.227-235
    • /
    • 2004
  • The aim of the present study was to examine the effect of leptin on CA release from the isolated perfused model of the rat adrenal gland, and to establish its mechanism of action. Leptin $(1{\sim}100\;ng/ml)$, when perfused into an adrenal vein of the rat adrenal gland for 60 min, enhanced a dose-dependently the secretory responses of CA evoked by ACh $(5.32{\times}10^{-3}\;M)$, DMPP $(10^{-4}\;M)$ and McN-A-343 $(10^{-4}\;M)$, although it alone has weak effect on CA secretion. However, it did not affect the CA secretion evoked by excess $K^+\;(5.6{\times}10^{-2}\;M)$. Leptin alone produced a weak secretory response of the CA. Moreover, leptin (10 ng/ml) in to an adrenal vein for 60 min also augmented the CA release evoked by BAY-K-8644, an activator of the dihydropyridine L-type $Ca^{2+}$ channels, and cyclopiazonic acid, an inhibitor of cytoplasmic $Ca^{2+}$ ATPase. However, in the presence of U0126 $(1\;{\mu}M)$, an inhibitor of mitogen-activated protein kinase (MAPK), leptin no longer enhanced the CA secretion evoked by ACh and DMPP. Furthermore, in the presence of anti-leptin (10 ng/ml), an antagonist of Ob receptor, leptin (10 ng/ml) also no longer potentiated the CA secretory responses evoked by DMPP and Bay-K-8644. Collectively, these experimental results suggest that leptin enhances the CA secretion from the rat adrenal medulla evoked by cholinergic stimulation (both nicotininc and muscarinic receptors), but does not that by membrane depolarization. It seems that this enhanced effect of leptin may be mediated by activation of U0126-sensitive MAPK through the leptin receptors, which is probably relevant to the activation of the dihydropyridine L-type $Ca^{2+}$ channels located on the rat adrenomedullary chromaffin cells.

Multiple Signaling Pathways Contribute to the Thrombin-induced Secretory Phenotype in Vascular Smooth Muscle Cells

  • Jeong, Ji Young;Son, Younghae;Kim, Bo-Young;Eo, Seong-Kug;Rhim, Byung-Yong;Kim, Koanhoi
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제19권6호
    • /
    • pp.549-555
    • /
    • 2015
  • We attempted to investigate molecular mechanisms underlying phenotypic change of vascular smooth muscle cells (VSMCs) by determining signaling molecules involved in chemokine production. Treatment of human aortic smooth muscle cells (HAoSMCs) with thrombin resulted not only in elevated transcription of the (C-C motif) ligand 11 (CCL11) gene but also in enhanced secretion of CCL11 protein. Co-treatment of HAoSMCs with GF109230X, an inhibitor of protein kinase C, or GW5074, an inhibitor of Raf-1 kinase, caused inhibition of ERK1/2 phosphorylation and significantly attenuated expression of CCL11 at transcriptional and protein levels induced by thrombin. Both Akt phosphorylation and CCL11 expression induced by thrombin were attenuated in the presence of pertussis toxin (PTX), an inhibitor of Gi protein-coupled receptor, or LY294002, a PI3K inhibitor. In addition, thrombin-induced production of CCL11 was significantly attenuated by pharmacological inhibition of Akt or MEK which phosphorylates ERK1/2. These results indicate that thrombin is likely to promote expression of CCL11 via PKC/Raf-1/ERK1/2 and PTX-sensitive protease-activated receptors /PI3K/Akt pathways in HAoSMCs. We propose that multiple signaling pathways are involved in change of VSMCs to a secretory phenotype.

Extracellular Proteome Profiling of Bacillus pumilus SCU11 Producing Alkaline Protease for Dehairing

  • Wang, Chao;Yu, Shiqiang;Song, Ting;He, Tingting;Shao, Huanhuan;Wang, Haiyan
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권11호
    • /
    • pp.1993-2005
    • /
    • 2016
  • Bacillus pumilus is one of the most characterized microorganisms that are used for high-level production of select industrial enzymes. A novel B. pumilus SCU11 strain possessing high alkaline protease activity was obtained in our previous work. The culture supernatant of this strain showed efficient dehairing capability with minimal collagen damage, indicating promising potential applications in the leather industry. In this study, the strain's extracellular proteome was identified by LC-MS/MS-based shotgun proteomic analysis, and their related secretory pathways were characterized by BLAST searches. A total of 513 proteins, including 100 actual secreted and 413 intracellular proteins, were detected in the extracellular proteome. The functions of these secreted proteins were elucidated and four complete secretory systems (Sec, Tat, Com, and ABC transporter) were proposed for B. pumilus. These data provide B. pumilus a comprehensive extracellular proteome profile, which is a valuable theoretical and applicative basis for future genetic modifications and development of industrial enzymes.

Xylitol stimulates saliva secretion via muscarinic receptor signaling pathway

  • Park, Eunjoo;Na, Hee Sam;Jeong, Sunghee;Chung, Jin
    • International Journal of Oral Biology
    • /
    • 제44권2호
    • /
    • pp.62-70
    • /
    • 2019
  • Xylitol is well-known to have an anti-caries effect by inhibiting the replication of cariogenic bacteria. In addition, xylitol enhances saliva secretion. However, the precise molecular mechanism of xylitol on saliva secretion is yet to be elucidated. Thus, in this study, we aimed to investigate the stimulatory effect of xylitol on saliva secretion and to further evaluate the involvement of xylitol in muscarinic type 3 receptor (M3R) signaling. For determining these effects, we measured the saliva flow rate following xylitol treatment in healthy individuals and patients with dry mouth. We further tested the effects of xylitol on M3R signaling in human salivary gland (HSG) cells using real-time quantitative reverse-transcriptase polymerase chain reaction, immunoblotting, and immunostaining. Xylitol candy significantly increased the salivary flow rate and intracellular calcium release in HSG cells via the M3R signaling pathway. In addition, the expressions of M3R and aquaporin 5 were induced by xylitol treatment. Lastly, we investigated the distribution of M3R and aquaporin 5 in HSG cells. Xylitol was found to activate M3R, thereby inducing increases in $Ca^{2+}$ concentration. Stimulation of the muscarinic receptor induced by xylitol activated the internalization of M3R and subsequent trafficking of aquaporin 5. Taken together, these findings suggest a molecular mechanism for secretory effects of xylitol on salivary epithelial cells.