• Title/Summary/Keyword: secondary wastewater

Search Result 167, Processing Time 0.027 seconds

Removal of nitrogen and phosphorus of the secondary effluent by electro-coagulation (전기응집을 이용한 2차 유출수의 질소.인 제거 공정 연구)

  • Han, Song-Hee;Chang, In-Soung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.4
    • /
    • pp.579-589
    • /
    • 2012
  • To reduce extensive energy costs of the internal recycling for the purpose of denitrification in the advanced wastewater treatment, a post-treatment process using an electro-coagulation to treat nitrate in the secondary effluents is evaluated in this study. Removals of phosphorus and organics in the secondary effluents by the electro-coagulation were also evaluated to propose an alternative advanced wastewatert treatment process. A series of experiments of the electro-coagulation were carried out with the following 4 different samples: synthetic solution containing nitrate only, synthetic solution containing nitrate as well as phosphorus, secondary effluents from activated sludge cultivated in laboratory, and secondary effluents from real wastewater treatment plants. Removals of nitrate and phosphorus in the synthetic solution were 30 and 97 % respectively, which verified the feasibility of the process. Removals of nitrate, phosphorus and COD in the secondary effluents from the cultivated sludge in laboratory were 49, 90 and 19 % respectively. Removal efficiency of the total nitrogen, nitrrate, phosphorus and COD in the secondary effluent from real wastewater treatment plant were 50, 61, 98 and 80 % respectively. The removal of the total nitrogen was less than the nitrate as expected, which is due to the formation of ammonia nitrogen in the cathode. But the proposed scheme could be an energy saving and alternative process for the advanced wastewater treatment if further studies for the process optimization are carried out.

Evaluating Two Types of Rectangular Secondary Clarifier Performance at Biological Nutrient Removal Facilities (생물학적 고도처리공법에 적용된 두 형태의 장방형 이차침전지 성능 파악)

  • Lee, Byonghi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.5
    • /
    • pp.561-570
    • /
    • 2013
  • There are two types of rectangular secondary clarifier at biological nutrient removal (BNR) facility to settle MLSS; conventional activated sludge secondary clarifier and Gould Type I clarifier. In this study, the performances of two types at respective biological nutrient removal facility are compared using weekly operational data. Surface Overflow Rate (SOR), Surface Loading Rate (SLR), Sludge Volume Index (SVI), secondary effluent SS concentration are studied. It has found that Gould Type I has 3.5 times less average secondary effluent SS concentration that is 2.4 mg/L than that of conventional activated sludge secondary clarifier. Both SOR and SLR have shown little effect on secondary effluent SS concentrations at Gould Type I clarifier in contrary that SOR affects the secondary effluent SS concentrations at conventional activated sludge rectangular secondary clarifier. From this study, it is recommended that Gould Type I must be considered for secondary clarifier when BNR plant is designed.

A basic study on the reuse of shipboard wastewater(I) - The secondary treatment of shipboard wastewater by Sequence Batch Reactor(SBR)- (선박용수의 재사용에 관한 기초연구(I) -연속회분식 반응조를 이용한 선박폐수의 2차처리-)

  • 김인수;김억조;김동근;고성정;안종수
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.4 no.1
    • /
    • pp.41-48
    • /
    • 1998
  • There are several serious problems in treating shipboard wastewater due to special environmental conditions of ship, such as confined space, rolling and pitching, change of temperature and so on. It was suggested that Sequence Batch Reator (SBR) process might be suitable for overcoming above problems in terms of small size, high capacity of treating wastewater and full automation. In this study the SBR process was used for the secondary treatment of shipboard wastewater. The average removal efficiency of DOC, nitrogen, phosphorus and surfactants(MBAS) were studied and the effects of various C/N ration on the efficiency of treatment were investgated. From the experimental results it was convinced that the SBR process would be able to be used as a suitable process for removing organic matters and nitrogen in reuse system of shipboard wastewater.

  • PDF

Defining optimum configuration for secondary clarifier using computer simulation (컴퓨터 시뮬레이션을 이용한 최적 이차침전지 형상 파악)

  • Lee, Byong-Hi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.2
    • /
    • pp.219-230
    • /
    • 2010
  • Computer simulation has been widely used to design and optimize the operation of wastewater treatment plants since 1980. For secondary clarifiers, the simulation has been a tool to optimize the performance by providing dimensions for flocculation well. However, there has been no attempt to find the optimized geometrical parameters in circular secondary clarifier using simulation tools. In this study, three SVIs (Sludge Volume Indexes), two well types (feed and flocculation wells), 8 SWDs (Side Water Depths) and 9 bottom slopes were variables for simulation. Diurnal inflow and associated MLSS (Mixed Liquor Suspended Solid) concentrations were used for input loadings. When flocculation well was installed, 48% less concentration at lowest ESS (Effluent Suspended Solid) concentrations was produced and the diurnal ESS concentration range had been reduced by 52%. From these results, flocculation well must be installed to produce lower and stable ESS from circular secondary clarifiers. Under same loading conditions with $300m{\ell}$/g of SVI, The lowest ESS was produced when SWD was 4.5m with 4% of bottom slope. Therefore, SWD and bottom slope must not be deeper than 4.5m and must be near 4%, respectively, in circular clarifier with flocculation well to produce the lowest ESS concentration.

Optimization of influent and effluent baffle configuration of a rectangular secondary clarifier using CFD and PIV test (CFD와 PIV test를 통한 장방형 2차침전지 유입 및 유출배플 형상 최적화)

  • Choi, Young-Gyun;Bae, Kang-Hyung;Yoon, Jong-Hwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.1
    • /
    • pp.41-50
    • /
    • 2010
  • The influent and effluent baffle configurations seriously affect the hydraulic characteristics of the secondary clarifier in wastewater treatment plant. In this study, those baffle configurations were optimized by computational fluid dynamics(CFD) analysis and particle image velocity(PIV) test in order to obtain uniform flow in inlet region and to minimize upflow velocity in outlet region of the secondary clarifier. Theoretical analysis using CFD showed that more uniform flow could be accomplished when the influent baffle was located closely to the inlet opening. Effects of effluent baffle configuration on the upflow velocity in the outlet region of the secondary clarifier were analyzed with four types of effluent baffles which are widely adopted for secondary clarifier design. From the CFD analysis, McKinney baffle(EB-2) was estimated to be the most effective for restraining the upflow velocity in the outlet region and these trends were identified by PIV tests. In addition, the McKinney baffle showed the most uniform overflow velocity distribution around the weir.

Improved Coagulant for High Efficiency Phosphorus Removal in Secondary Effluent of Waste Water Treatment Plant (하수처리장 2차 처리수의 고효율 인 제거를 위한 응집제 개선)

  • Choi, Jeung-seung;Lee, Byung-ha;Kim, Ki-pal;Baek, Dae-jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.6
    • /
    • pp.683-690
    • /
    • 2016
  • Modified coagulants were investigated for the removal of phosphorus from secondary effluent of wastewater treatment. The modified coagulants were prepared by mixing alkali earth metal ions such as calcium and magnesium. The basicity of a coagulant influenced on the removal of phosphorus, and coagulants with basicity of 5.9% showed a better removal of total phosphorus than that of 38.5%. Also, coagulants with alkali earth metals enhanced the performance of coagulation by 10% and resulted in 67.1% for total phosphorus removal. Moreover, the removal of suspended solids and chemical oxygen demand was improved using coagulants with low basicity and earth metal ions. Results of this study demonstrated that the use of coagulants with low basicity, and calcium and magnesium ions is recommended to improve wastewater effluent quality.

Effect of Ozonation in Microfiltration Membrane for Wastewater Reuse (정밀여과법 하수재이용 공정에서 오존의 전처리 효과에 관한 연구)

  • Moon, Seong-Yong;Ahn, Se-Hyuk;Lee, Sang-Hyup;Park, Jong-Hoon;Hong, Suk-Won;Choi, Yong-Su
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.4
    • /
    • pp.535-543
    • /
    • 2006
  • The Ozone oxidation process was applied to increase the efficiency of reuse process when treating the secondary effluent by the membrane system. This paper focus on decreasing efficiency of membrane fouling, because of membrane fouling reduction by ozone and evaluation of application of the ozone oxidation. The feed water was secondary effluent from BNR process. The result shows that the ozone pretreatment can reduce membrane fouling effectively. Also, the improvement of treated water quality was obvious. The reduction of the membrane fouling led decrease of following pollutant and increase of lnner adsorptive ability of hydrophilic organic matter and decrease of molecular weight. MF membrane process alone can meet the domestic reuse water standards. And ozone pretreatment process also can increase the removal rates of turbidity, COD, nitrogen, and color.

Effects of dolomite addition on phosphorus removal by chemical coagulation of secondary treated effluent (백운석 첨가가 응집에 의한 하수 처리수의 인 제거에 미치는 영향)

  • Lee, Byung-Ha;Park, Joon-Hong;Cha, Ho-Young;Maeng, Sung-Kyu;Song, Kyung-Guen
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.3
    • /
    • pp.443-451
    • /
    • 2012
  • Wastewater treatment plants need to reduce phosphorus in order to meet increasingly stringent regulations on phosphorus. This study evaluated the feasibility of dolomite as a coagulation aid to enhance phosphorus removal from secondary treated wastewater by chemical coagulation. Standard jar tests were conducted to evaluate the effect of dolomite addition on a coagulation process for phosphorus removal and to determine the optimum doses of coagulants and dolomite. Coagulants used with dolomite yielded a significant improvement in phosphorus removal and reduced total phosphorus concentrations below 0.02 mg/L in wastewater effluent. Dolomite has played an important role in enhancing phosphate adsorption and increasing pH, as a coagulation aid. The maximum removal efficiency of phosphorus in this study was yielded at 25 mg/l of dolomite and 20 mg Al/L of PAC dose. However, considering economic aspects, the optimum doses of dolomite and PAC were 10 mg/L and 15mg Al/L, respectively. Consequently, dolomite, a coagulation aid, can be used in coagulation processes to enhance the removal of phosphorus.

A state-of-the-art analysis of fresh, mechanical, durability and microstructural characterization of wastewater concrete

  • Nabil Ben Kahla;Ali Raza;Muhammad Arshad;Ahmed Babeker Elhag
    • Advances in concrete construction
    • /
    • v.17 no.2
    • /
    • pp.93-110
    • /
    • 2024
  • The process of concrete production consumes an immense volume of water, with approximately one billion metric tons of freshwater being utilized for tasks such as aggregate washing, fresh concrete production, and concrete curing. The accessibility of clean water for the public is hindered by the limited availability of water resources, primarily due to the rapid expansion of industries such as tanneries, stone quarries, and concrete manufacturing. These industries not only consume substantial amounts of freshwater but also generate significant volumes of various types of waste. Therefore, the use of fresh water in concrete production should be minimized. Few studies have reviewed the production of concrete using wastewater to derive practical and applicable findings for the industry. Thus, this study thoroughly explores the physical and chemical effects of wastewater on concrete, examining aspects like durability, hardened properties, and rheological characteristics. It identifies key factors that can compromise concrete properties when exposed to wastewater. The scarcity of research on integrating wastewater into concrete production underscores the urgent necessity for innovative approaches and methodologies in this field. While the inclusion of wash water typically reduces the workability of fresh concrete, it often enhances its compressive strength. Notably, significant improvements have been observed when using tertiary processed wastewater, wash water, polyvinyl alcohol-based wash water (PVAW), and reclaimed water in the concrete mixing process. The application of tertiary treatment to wastewater resulted in a notable enhancement of compressive strength, showing increases of up to 7%. In contrast, wastewater treated through secondary methods experienced a decline in strength ranging from 9% to 18% over a period of six months. However, the use of reclaimed wastewater demonstrated an improvement in strength by 8% to 17%, depending on the concentration level ranging from 25% to 100%. In contrast, the utilization of secondary processed wastewater and industrial water has a minimal impact on the concrete's strength.

Advanced Secondary Wastewater Treatment Using the DOF (Dissolved Ozone Flotation) System (DOF(Dissolved Ozone Flotation) 시스템을 이용한 하수처리장 방류수의 고도처리에 대한 연구)

  • Lee, Byoung Ho;Kim, Sang Hee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.6
    • /
    • pp.767-774
    • /
    • 2005
  • The DOF (Dissolved Ozone Flotation) system was used to treat the effluent of the secondary wastewater treatment plant. The DOF system uses ozone instead of air, while DAF (Dissolved Air Flotation) uses air. Moreover, since the solubility of ozone is higher than air, the DOF system produces larger volume of micro-bubbles than the DAF system does. Thus, the DOF system performs better than the DAF system in floating ability. The DOF system could remove 70% of turbidity to an average of 0.59NTU in effluent from 2.31NTU in influent. The removal efficiency of absorbance measured with UV-254 in the effluent of the DOF system was 63%, while only 19% was removed by the DAF system. the DOF system removed 84% of the color from 25~26CU to 4CU, while DAF system removed 42% of the color to 15 CU. The CODMn removal efficiency of the DOF system was 34%, 6.8mg/l of effluent $COD_{Mn}$ concentratin, while it was 20%, 8.3mg/L of effluent $COD_{Mn}$ concentratin, to use the DAF system. Microbial bacteria such as coliform bacteria, and heterotrophic bacteria were removed over 99% by the DOF system, and 42~45% by the DAF system. That is, Microbial bacteria were almost completely destroyed by the DOF system. To sum up with, the DOF system was found to be very effective to treat effluent of the wastewater treatment plant.