• Title/Summary/Keyword: secondary vegetation

Search Result 117, Processing Time 0.026 seconds

Characteristics of vegetation succession on the Pinus thunbergii forests in warm temperate regions, Jeju Island, South Korea

  • Hong, Yongsik;Kim, Euijoo;Lee, Eungpill;Lee, Seungyeon;Cho, Kyutae;Lee, Youngkeun;Chung, Sanghoon;Jeong, Heonmo;You, Younghan
    • Journal of Ecology and Environment
    • /
    • v.43 no.4
    • /
    • pp.438-453
    • /
    • 2019
  • Background: To investigate the trends of succession occurring at the Pinus thunbergii forests on the lowlands of Jeju Island, we quantified the species compositions and the importance values by vegetation layers of Braun-Blanquet method on the Pinus thunbergii forests. We used multivariate analysis technique to know the correlations between the vegetation group types and the location environmental factors; we used the location environment factors such as altitudes above sea level, tidal winds (distance from the coast), annual average temperatures, and forest gaps to know the vegetation distribution patterns. Results: According to the results on the lowland of Jeju Island, the understory vegetation of the lowland Pinus thunbergii forests was dominated by tall evergreen broad-leaved trees such as Machilus thunbergii, Neolitsea sericea, and Cinnamomum japonicum showing a vegetation group structure of the mid-succession, and the distribution patterns of vegetation were determined by the altitudes above sea level, the tidal winds on the distance from the coast, the annual average temperatures, and the forest gaps. We could discriminate the secondary succession characteristics of the Pinus thunbergii forests on the lowland and highland of Jeju Island of South Korea. Conclusions: In the lowland of Jeju Island, the secondary succession will progress to the form of Pinus thunbergii (early successional species)→Machilus thunbergii, Litsea japonica (mid-successional species)→Machilus thunbergii (late-successional species) sequence in the temperate areas with strong tidal winds. In the highland of Jeju Island, the succession will progress to the form of Pinus thunbergii (early successional species)→Neolitsea sericea, Eurya japonica (mid-successional species)→Castanopsis sieboldii (late-successional species) sequence in the areas where tidal winds are weak and temperatures are relatively low. However, local differences between lowland and highland of Jeju Island will be caused by the micro-environmental factors resulting from the topographic differences and the supply of tree seeds. From the characteristics of succession study, we could properly predict and manage the Pinus thunbergii forest ecosystem on lowland and highland of Jeju Island.

Secondary succession and species diversity of pinus densiflora forest after fire (산화후 소나무림의 이차천이와 종다양성)

  • Cho, Young-Ho;Kim, Woen
    • The Korean Journal of Ecology
    • /
    • v.15 no.4
    • /
    • pp.337-344
    • /
    • 1992
  • A study on the secondary succession and species diversity was conducted at burned sites of which pinus densiflora forest and its floor vegetation was almost destroyed by the forest first in the mts. todok, sansong and palgong from 1977 to 1986. The changes of vegetation during period the year to 11th after fire occurred miscanthus sinensis var. purpurascens $\rightarrow$ miscanthus sinensis var. purpurascens-lespedeza cyrtobotyra $\rightarrow$ lespedeza cyrtobotyra $\rightarrow$ lespedeza cyrtobotyra-quercus serrata community. The biological spectra based on $SDR_3$(%) and SP(%) were $H-D_1-R_5-e$ types. The species diversity generally decrease from miscanthus to lespedeza stage and reached minimum at stage of lespedeza, and after that a litter increase for lespedeza-quercus stage. The species distribution curves showed a decrease from miscanthus to lespedeza stage and slight increase at lespedeza-quercus stage in evenness.

  • PDF

Forest Vegetation Units and Landscape Structures of Mt. Inwang in Seoul, Korea (인왕산(仁王山)의 산림식생단위(山林植生單位)와 경관구조(景觀構造))

  • Cho, Hyun-Je;Cho, Jae-Hyong;Lee, Chang-Seok
    • Journal of Korean Society of Forest Science
    • /
    • v.88 no.3
    • /
    • pp.342-351
    • /
    • 1999
  • The forest vegetation developing on Mt. Inwang, an isolated forestland in Seoul, Korea was analyzed phytosociologically and its spatial distribution mapped out. Using the vegetation map, The characteristics of landscape structures in terms of the number and size of patches are discussed. Forest vegetation of the study area was classified into ten communities, ten groups, and eighty subgroups. Landscape element types were classified into secondary forests, relict communities, introduced plantations, and other elements including urbanized area. Pinus densiflora community, natural forest and Robinia pseudo-acacia community, plantation, formed matrix and some secondary forest elements, relict communities and the ether plantations of small size tended to distribute as small patches in such matrix. The number of patches per unit area in secondary forest elements was more than that in plantation elements. The result in patch size was vice versa. The vascular plant species richness of the landscape element types in Mt. Inwang was found to he positively related to their size. As the results of landscape ecological analyses, it was estimated that differentiation of patches recognized in community level would be related to human interference a and those in subordinate levels to natural process such as progression of succession.

  • PDF

Vegetation history around Yongneup moor at Mt. Daeamsan, Korea

  • Jang, Byeong-O;Kang, Sang-Joon;Choi, Kee-Ryong
    • Journal of Ecology and Environment
    • /
    • v.34 no.3
    • /
    • pp.259-267
    • /
    • 2011
  • A pollen analytical study of sediment sequences collected from Yongneup moor (sampling point: $38^{\circ}$12'57.4" N, $120^{\circ}$7'30.2" E) was conducted to understand the vegetation history in the mountainous region of the central Korean peninsula. Carbon dating was carried out to measure five successive samples obtained from the bottom at a depth of 180 cm to the surface. The Yongneup moor sediment revealed four main local pollen zones; that is, four past vegetation phases as follows: Local pollen zone I: Quercus-Pinus zone; estimated age, 5,900-4,800 calibrated years (cal) before present (BP); vegetation type, cool-temperate central/montane deciduous broad-leaved forest. Local pollen zone II: Pinus-Abies-Quercus zone; estimated age, 4,800-3,400 cal BP; vegetation type, cool-temperate northern/alti-montane mixed coniferous and deciduous broad-leaved forest. Local pollen zone III: Quercus-Pinus-Abies zone; estimated age, 3,400-400 cal BP; vegetation type: cool-temperate central/montane deciduous broad-leaved forest. Local pollen zone IV: Pinus-Quercus zone; estimated age, 400-present cal BP; vegetation type, cool-temperate central/montane mixed deciduous broad-leaved and coniferous forest. It was confirmed that subalpine coniferous forests had expanded to the mountainous region of the central Korean peninsula during the period from 4,800-3,400 cal BP and thereafter deciduous forests dominated by Q. mongolica were established. Notably, secondary forests dominated by P. densiflora developed in the lower part of the mountainous region of the central Korean peninsula about 400 cal BP due to human interference.

Diversity and Zonation of Vegetation Related Micro-Topography in Sinduri Coastal Dune, Korea - Focused on the Natural Monument Area - (신두리 해안사구의 미지형별 식생의 대상구조와 다양성 변화 - 천연기념물 지정지를 중심으로 -)

  • Song, Hong-Seon;Cho, Woo
    • Korean Journal of Environment and Ecology
    • /
    • v.21 no.3
    • /
    • pp.290-298
    • /
    • 2007
  • The results of this research on the diversity, zonation of vegetation and micro-topography by TWINSPAN classification and DECORANA ordination, executed with Sinduri coastal dunes of Korea, are as follows: The vegetation and micro-topography of coastal dunes formed a noticeably clear zonation structure. The beach in the direction of the coastline saw a lot of appearance of Salsola komarovi and the primary dune was dominated by Elymus mollis. Imperata cylindrica var. koenigii and Carex pumila formed a colony at flat area of the sand hills and Calamagrostis epigeios was widely distributed at the wet slack. The secondary dune was dominated mostly by Ischaemum anthephoroides and Imperata cylindrica var. koenigii, and it showed an aspect of the distribution of Vitex rotundifolia and Rosa rugosa. while the hinterland hillside in the direction of inland was dominated by Robinia pseudo-acacia and Pinus thunbergii. However, Carex kobomugi, known as the pioneer species of the coastline-bound areas at the coastal dune, dominantly occupied the secondary dune of the rear side and continentally-inclined Miscanthus sinensi and Oenothera biennis of naturalized plant were irregularly spread over the whole of the coastal dune, so the stabilization of micro-topography seemed to be uncertain. Particularly, Miscanthus sinensis was predicted to be changed into dominant species of the primary dune, and secondary dune and slack having a commonly high species gathering inclination with the more progress of stabilization of the coastal dune. The expansion of sand hill wetlands and roads located between the primary dune and secondary dune was judged to have an effect on the zonation structure of plant distribution.

A Study on Distribution of Vegetation and Assessment of Green Naturality in Naejangsan National Park (내장산국립공원의 식생분포 및 녹지자연도 사정에 관한 연구)

  • Oh, Koo-Kyoon;Kim, Young-Jin
    • Korean Journal of Environment and Ecology
    • /
    • v.25 no.2
    • /
    • pp.166-174
    • /
    • 2011
  • This study was carried out to investigate the actual vegetation and Degree of Green Naturality(DGN) in Naejangsan National Park in 2010. The actual vegetation of the surveyed site were classified into twelve plant communities and the others. Secondary forest were classified into eight plant communities; Pinus densiflora community, Deciduous broadleaf forest, Quercus mongolica community, etc. Afforested lands were classified into four forest types: P. rigida -P. densiflora forest, P. rigida forest, etc. The area of DGN 8 consisted of 60.58% while the area of DGN 9 consisted of 3.62% when compared with land area in Naejangsan National Park. The exotic plants needs to be managed for recovery of natural landscape and biological diversity in Naejangsan National Park.

Basic Studies on the Plant Ecosystem for the Environmental Conservation in Masan District (마산지역의 환경보전을 위한 식물생태계의 기초연구)

  • 이경재;이명우
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.13 no.1
    • /
    • pp.79-94
    • /
    • 1985
  • This study was carried out to give basic information about the environmental conservation in Masan District. It included the actual vegetation the degree of human disturbance of vegetation, plant biomass and biomass production. The natural vegetation was nonexistent and the major plant communities of the secondary forest was P. thunbergii-Q. acutissima and Quercus forest. P. thunbergii-Q. acutissima community area was 29.2% of Masan District and the secondary forest and the afforestation area was 48% and 13% of Masan District respectively. The ecological diversity of the plant community was high value in Q. acutissima- P. thunbergii, Q.aliena and Carpinus laxiflora-Q.variabilis communicty. As the investigation of the ecological succession in Masan Forest, P. thunbergii community is edaphic climax and mixed forest will be changed gradually dominant species of Quercus species. It was implied that Genus Quercus hadnever beenso easily taken ever by the Genus Pinus which forms the edaphic climax at vast areas of forest land. In the degree of human disturbance of vegetation, the degree 7 (secondary forest 1) was 52.8% and the green spaces in Masan cover 65%, which nongreen spaces 35 %. Total amount of plant biomass produced from Masan District was estimated to be 160, 470.95 tons. Annual Production of dry matter biomass amounts to be 32,940.64 tons. Estimated amount for O$_2$produced annually from the vegetated area in Masan was 34,856 tons.

  • PDF

Seasonal Weight in Seeding Mixture for the Restoration and Revegetation of the Disturbed Slopes (훼손 비탈면의 생태복원녹화를 위한 종자배합량의 계절별 가중치에 관한 연구)

  • Hur, Young-Jin;Ahn, Tae-Young
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.1
    • /
    • pp.41-54
    • /
    • 2006
  • In case of leaving artificial slopes resulting from large-scale constructions, there may be secondary damage caused by soil loss due to erosion and collapse. Furthermore, slope-restoring constructions have a few problems such as monotonous landscape and difficult succession of secondary vegetation due to reckless use of exotic grass, despite attaining the initial purpose of revegetation. To settle this problem, selected plants deemed to be proper for revegetation were used on one of thin vegetation base methods, CODRA SYSTEM, and made seeding mixture experimental plots considering germination rates differing in each season. Native herbs, native shrubs and exotic herbs contents were increased by 30% and 50% respectively, centered on seeding quantity(30g/$m^2$) used as design standard in the seed spray method, in order to figure out proper quantity for revegetation in each season.

The Secondary Vegetation of the Burned Area of a Mountain in Dangji-Dong (당지동의 산화적지의 이차식생)

  • Kim, Woen
    • The Korean Journal of Ecology
    • /
    • v.6 no.3
    • /
    • pp.187-197
    • /
    • 1983
  • This report is a series of the investigation of the secondary vegetation and succession at the forest fire area in Dangji-Dong of Kyungsang-pookdo province. The forest fires occurred on April 8, 1982. This investigation was carried out from June 18, 1982 to May 29, 1983 once in each season. Before to fires, the Pinus densiflora was dominant and the woody plants of understory were mainly composed of the Quercus serrata, Q. dentata, Lespedeza maritima and L. macimowiczii. Compared with the florstic composition between the unburned and burned areas after the fires, the floristic composition of unburned area comprises: 79 families, 194 genera, 223 species, 26 varieties and 6 formae (255 kinds of vascular plants). The index of similary shows 0.77 (S$\Phi$renson:1948) in this area. The analyses of the life-form compositions in the unburned and burned area show 32.9% and 29.3% in dormancy form (H), 42.4% and 37.7% in disseminule form($D_1$), 80.8% and 82.2% in radicoid form ($R_5$), and 57.7% and 61.8% in erect form(e) respectively. The biological type shows H-$D_1$-R5-e, which is common in both areas, and erect form is generally prevailing in these communities.

  • PDF

Impact of Land Use Land Cover Change on the Forest Area of Okomu National Park, Edo State, Nigeria

  • Nosayaba Osadolor;Iveren Blessing Chenge
    • Journal of Forest and Environmental Science
    • /
    • v.39 no.3
    • /
    • pp.167-179
    • /
    • 2023
  • The extent of change in the Land use/Land cover (LULC) of Okomu National Park (ONP) and fringe communities was evaluated. High resolution Landsat imagery was used to identify the major vegetation cover/land use systems and changes around the national park and fringe communities while field visits/ground truthing, involving the collection of coordinates of the locations was carried out to ascertain the various land cover/land use types identified on the images, and the extent of change over three-time series (2000, 2010 and 2020). The change detection was analyzed using area calculation, change detection by nature and normalized difference vegetation index (NDVI). The result of the classification and analysis of the LULC Change of ONP and fringe communities revealed an alarming rate of encroachment into the protected area. All the classification features analyzed had notable changes from 2000-2020. The forest, which was the dominant LULC feature in 2000, covering about 66.19% of the area reduced drastically to 36.12% in 2020. Agricultural land increased from 6.14% in 2000 to 34.06% in 2020 while vegetation (degraded land) increased from 27.18% in 2000 to 38.89% in 2020. The magnitude of the change in ONP and surroundings showed the forest lost -247.136 km2 (50.01%) to other land cover classes with annual rate change of 10%, implying that 10% of forest land was lost annually in the area for 20 years. The NDVI classification values of 2020 indicate that the increase in medium (399.62 km2 ) and secondary high (210.17 km2 ) vegetation classes which drastically reduced the size of the high (38.07 km2 ) vegetation class. Consequent disappearance of the high forests of Okomu is inevitable if this trend of exploitation is not checked. It is pertinent to explore other forest management strategies involving community participation.