• Title/Summary/Keyword: secondary user

Search Result 335, Processing Time 0.027 seconds

Security Threat Identification and Prevention among Secondary Users in Cognitive Radio Networks

  • Reshma, CR.;Arun, kumar B.R
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.5
    • /
    • pp.168-174
    • /
    • 2021
  • The Cognitive radio (CR) is evolving technology for managing the spectrum bandwidth in wireless network. The security plays a vital role in wireless network where the secondary users are trying to access the primary user's bandwidth. During the allocation the any malicious user either he pretends to be primary user or secondary user to access the vital information's such as credentials, hacking the key, network jam, user overlapping etc. This research paper discusses on various types of attack and to prevent the attack in cognitive radio network. In this research, secondary users are identified by the primary user to access the primary network by the secondary users. The secondary users are given authorization to access the primary network. If any secondary user fails to provide the authorization, then that user will be treated as the malicious user. In this paper two approaches are suggested one by applying elliptic curve cryptography and the other method by using priority-based service access.

Cooperative Power Control Scheme for a Spectrum Sharing System

  • Ban, Tae-Won;Jung, Bang-Chul
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.6
    • /
    • pp.641-646
    • /
    • 2011
  • In this paper, we investigate a power control problem which is very critical in underlay-based spectrum sharing systems. Although an underlay-based spectrum sharing system is more efficient compared to an overlay-based spectrum sharing system in terms of spectral utilization, some practical problems obstruct its commercialization. One of them is a real-time-based power adaptation of secondary transmitters. In the underlay-based spectrum sharing system, it is essential to adapt secondary user's transmit power to interference channel states to secure primary users' communication. Thus, we propose a practical power control scheme for secondary transmitters. The feedback overhead of our proposed scheme is insignificant because it requires one-bit signaling, while the optimal power control scheme requires the perfect information of channel states. In addition, the proposed scheme is robust to feedback delay. We compare the performance of the optimal and proposed schemes in terms of primary user's outage probability and secondary user's throughput. Our simulation results show that the proposed scheme is almost optimal in terms of both primary user's outage probability and secondary user's throughput when the secondary user's transmit power is low. As the secondary user's transmit power increases, the primary user's outage probability of the proposed scheme is degraded compared with the optimal scheme while the secondary user's throughput still approaches that of the optimal scheme. If the feedback delay is considered, however, the proposed scheme approaches the optimal scheme in terms of both the primary user's outage probability and secondary user's throughput regardless of the secondary user's transmit power.

Connectivity Analysis of Cognitive Radio Ad-hoc Networks with Shadow Fading

  • Dung, Le The;An, Beongku
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.9
    • /
    • pp.3335-3356
    • /
    • 2015
  • In this paper, we analyze the connectivity of cognitive radio ad-hoc networks in a log-normal shadow fading environment. Considering secondary user and primary user's locations and primary user's active state are randomly distributed according to a homogeneous Poisson process and taking into account the spectrum sensing efficiency of secondary user, we derive mathematical models to investigate the connectivity of cognitive radio ad-hoc networks in three aspects and compare with the connectivity of ad-hoc networks. First, from the viewpoint of a secondary user, we study the communication probability of that secondary user. Second, we examine the possibility that two secondary users can establish a direct communication link between them. Finally, we extend to the case of finding the probability that two arbitrary secondary users can communicate via multi-hop path. We verify the correctness of our analytical approach by comparing with simulations. The numerical results show that in cognitive radio ad-hoc networks, high fading variance helps to remarkably improve connectivity behavior in the same condition of secondary user's density and primary user's average active rate. Furthermore, the impact of shadowing on wireless connection probability dominates that of primary user's average active rate. Finally, the spectrum sensing efficiency of secondary user significantly impacts the connectivity features. The analysis in this paper provides an efficient way for system designers to characterize and optimize the connectivity of cognitive radio ad-hoc networks in practical wireless environment.

Adaptive Power Control Strategy based on Spectrum Sensing for Cognitive Relay Networks (CR 넷워크를 위한 주파수 감지에 기번한 적응적인 전력 제어 전략)

  • HU, SIYUAN;Joe, Inwhee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.05a
    • /
    • pp.82-85
    • /
    • 2019
  • An adaptive power control scheme is proposed for the cognitive relay networks with joint overlay and underlay spectrum sharing model. The transmit power of the secondary user is adjusted adaptively according to the spectrum sensing results and the interference channel condition. The outage probability of the secondary user is compared by Monte - Carlo simulations between the fixed power control scheme and pure overlay or underlay spectrum sharing schemes. The results show that, by employing the adaptive power control strategy, the interference probability of the secondary user to the primary user is decreased by 70 % ~ 80 % under the same outage probability. Also, the outage probability of the secondary user is reduced by 1 ~ 2 orders of magnitude under the same interference probability. Thus, the performance of the spectrum sharing is improved effectively.

Active Secondary User Selection Algorithm of Opportunistic Spatial Orthogonalization Considering Interference by a Primary User (주 사용자의 간섭을 고려한 Opportunistic Spatial Orthogonalization의 활성 부 사용자 선택 알고리즘)

  • Yoo, Kang-Hyun;Kim, Yong-Hwa;Lee, Han-Byul;Kim, Seong-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.11A
    • /
    • pp.892-902
    • /
    • 2011
  • The opportunistic spatial orthogonalization (OSO) scheme, proposed by Cong Shen and Michael P. Fitz, allows the existence of secondary users during the period in which the primary user is occupying all licensed bands. This paper introduces an active secondary user selection algorithm which mitigates the interference from the primary user transmitter to the secondary user receiver based on single-input multi-output system without altering a primary user's transmission strategy. A proposed algorithm guarantees the minimum average throughput of the primary user and overcomes the average sum throughput of a conventional OSO. We have numerically analyzed the average throughput under various constraints.

Power Allocation and Performance Analysis for the Secondary User under Primary Outage Constraint in Cognitive Relay Network (Cognitive Relay 네트워크에서 일차 사용자의 Outage 제약 조건 하에서의 이차 사용자의 파워 할당 기법 및 성능 분석)

  • Kim, Hyung-Jong;Hong, Dae-Sik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.8
    • /
    • pp.46-51
    • /
    • 2012
  • In this paper, we investigate the power allocation for cognitive relay networks. Cognitive relay networks offer not only increasing spectral efficiency by spectrum sharing but also extending the coverage through the use of relays. For spectrum sharing, conventional works have assumed that secondary users know perfect channel information between the secondary and primary users. However, this channel information may be outdated at the secondary user because of the time-varying properties or feedback latency from the primary user. This causes the violation for interference constraint, and the secondary user cannot share the spectrum of the primary after all. To overcome this problem, we propose the power allocation scheme for the secondary user under the allowable primary user's outage probability constraint. Since the proposed power allocation scheme does not use the instantaneous channel information, the secondary users have lower feedback burden. In addition, the proposed scheme is also robust to the outdated channel environment.

Adaptive Spectrum Sensing for Throughput Maximization of Cognitive Radio Networks in Fading Channels

  • Ban, Tae-Won;Kim, Jun-Su;Jung, Bang-Chul
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.3
    • /
    • pp.251-255
    • /
    • 2011
  • In this paper, we investigate an adaptive cognitive radio (CR) scheme where a sensing duration and a detection threshold for spectrum sensing are adaptively determined according to the channel condition in a fading channel. We optimize the sensing duration and detection threshold of a secondary user to maximize the performance of the secondary user guaranteeing a primary user's secure communication. In addition, we analyze the effect of channel fading on the optimization of the sensing duration and detection threshold. Our numerical results show that the performance of the adaptive CR scheme can be drastically improved if a secondary user can take the advantage of channel information between primary and secondary users.

Cognitive radio system based on channel list for efficient channel searching (효과적 채널 검색을 위한 채널 목록 기반 무선 인지 시스템)

  • Lee, Young-Du;Koo, In-Soo
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.284-286
    • /
    • 2009
  • In this paper, we consider a cognitive radio system operating as secondary user. It uses an empty channel that is not currently used by primary users having the license to the channel. In the previous works, secondary user looks for an empty channel by choosing any channel in order or randomly and by sensing the channel to distinguish whether primary users are using. But if primary user is fixed type, we will find an empty channel faster than the mentioned channel selecting methods by using a method considering prior information about cases that primary user used the channel, since it is possible to analogize the channel access possibility of primary user according to regular time and position. Therefore, we propose a channel searching method based on the channel list for the purpose of reducing the channel searching time and improving throughput of secondary users. Firstly, we determine a weighting value of each channel based on the history of channel activities of primary users. This value is added to current channel state buffer and we search an empty channel from channel with smallest value to one with the biggest value. Finally, we compare the performances of the proposed method with those of the sequential channel searching and the random channel searching methods in terms of the average channel searching time and the average number of transmissions of secondary user.

  • PDF

An Integrated Game Theoretical Approach for Primary and Secondary Users Spectrum Sharing in Cognitive Radio Networks

  • Kim, Jong-Gyu;Nguyen, Khanh-Huy;Lee, Jung-Tae;Hwang, Won-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.12
    • /
    • pp.1549-1558
    • /
    • 2011
  • In this paper, we address the problem of bandwidth sharing among multiple primary users and multiple secondary users in a cognitive radio network. In cognitive radio networks, effective spectrum assignment for primary and secondary users is a challenge due to the available broad range of radio frequency spectrum as well as the requisition of harmonious coexistence of both users. To handle this problem, firstly, Bertrand game model is used to analyze a spectrum pricing in which multiple primary users emulate with each other to acquire maximal profit. After that, we employ Cournot game to model the spectrum sharing of secondary users to obtain optimal profit for each user also. Simulation results show that our scheme obtains optimal solution at Nash equilibrium.

Development of Efficient Encryption Scheme on Brain-Waves Using Five Phase Chaos Maps

  • Kim, Jung-Sook;Chung, Jang-Young
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.1
    • /
    • pp.59-63
    • /
    • 2016
  • Secondary damage to the user is a problem in biometrics. A brain-wave has no shape and a malicious user may not cause secondary damage to a user. However, if user sends brain-wave signals to an authentication system using a network, a malicious user could easily capture the brain-wave signals. Then, the malicious user could access the authentication system using the captured brain-wave signals. In addition, the dataset containing the brain-wave signals is large and the transfer time is long. However, user authentication requires a real-time processing, and an encryption scheme on brain-wave signals is necessary. In this paper, we propose an efficient encryption scheme using a chaos map and adaptive junk data on the brain-wave signals for user authentication. As a result, the encrypted brain-wave signals are produced and the processing time for authentication is reasonable in real-time.