• Title/Summary/Keyword: secondary system initialization

Search Result 2, Processing Time 0.013 seconds

Secondary System Initialization Protocol Using FFT-based Correlation Matching for Cognitive Radio Ad-hoc Networks

  • Yoo, Sang-Jo;Jang, Ju-Tae;Seo, Myunghwan;Cho, Hyung-Weon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.123-145
    • /
    • 2017
  • Due to the increasing demand for spectrum resources, cognitive radio networks and dynamic spectrum access draw a lot of research into efficiently utilizing limited spectrum resources. To set up cluster-based CR ad-hoc common channels, conventional methods require a relatively long time to successfully exchange the initialization messages. In this paper, we propose a fast and reliable common channel initialization protocol for CR ad-hoc networks. In the proposed method, the cluster head sequentially broadcasts a system activation signal through its available channels with a predetermined correlation pattern. To detect the cluster head's broadcasting channels and to join the cluster, each member node implements fast Fourier transform (FFT) and computes autocorrelation of an FFT bin sequence for each available channel of the member node. This is compared to the predetermined reference pattern. The join request and channel decision procedures are also presented in this paper. In a simulation study, the performance of the proposed method is evaluated.

Initial Rendezvous Protocol using Multicarrier Operation for Cognitive Radio Ad-hoc Networks

  • Choi, Ik-Soo;Yoo, Sang-Jo;Seo, Myunghwan;Han, Chul-Hee;Roh, Bongsoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.6
    • /
    • pp.2513-2533
    • /
    • 2018
  • In cognitive radio technology, the overall efficiency of communications systems can be improved without allocating additional bands by allowing a secondary system to utilize the licensed band when the primary system, which has the right to use the band, does not use it. In this paper, we propose a fast and reliable common channel initialization protocol without any exchange of initialization messages between the cluster head and the member nodes in cognitive ad-hoc networks. In the proposed method, the cluster and member nodes perform channel-based spectrum sensing. After sensing, the cluster head transmits a system activation signal through its available channels with a predetermined angle difference pattern. To detect the cluster head's transmission channels and to join the cluster, each member node implements fast Fourier transform (FFT) and computes autocorrelation for the angle difference sequence of the received signal patterns. This is compared to the predetermined reference angle difference pattern. The join-request and channel-decision procedures are presented in this paper. Performance evaluation of the proposed method is presented in the simulation results.