• 제목/요약/키워드: secondary metabolites compounds

검색결과 171건 처리시간 0.03초

Adventitious root culture for secondary metabolite production in medicinal plants: A Review

  • Rahmat, Endang;Kang, Youngmin
    • Journal of Plant Biotechnology
    • /
    • 제46권3호
    • /
    • pp.143-157
    • /
    • 2019
  • Medicinal plants are high-value natural resources that have been used as precautionary drugs by many people globally. The increasing global demand for bioactive compounds from medicinal plants has led to the overexploitation of many valuable species. One widely used approach to overcome this problem is the use of adventitious root cultures as a propagation strategy. This review examines the scientific research published globally on the application of adventitious root cultures for many medicinal plants. Adventitious roots generated under aseptic environments in suitable phytohormone-augmented medium exhibit high growth rates and production of important secondary metabolites. Parameters such as medium properties and composition, growth hormone type, and elicitation strategies for in vitro grown adventitious roots of medicinal plants, are the main topics discussed in this review. We also examine current developments in bioreactor system cultivation for plant bioactive compounds using adventitious root cultures, a technology with possible commercial applications, via several studies on adventitious root culture of medicinal plants in which bioreactor systems play a role. In conclusion, the development of adventitious root cultures for medicinal plants is highly useful because of their capability for vegetative propagation and germplasm preservation.

Marine Algicolous Endophytic Fungi - A Promising Drug Resource of the Era

  • Sarasan, Manomi;Puthumana, Jayesh;Job, Neema;Han, Jeonghoon;Lee, Jae-Seong;Philip, Rosamma
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권6호
    • /
    • pp.1039-1052
    • /
    • 2017
  • Endophytic fungi have currently been acknowledged as the most promising source of bioactive compounds for drug discovery, and considerable progress has been made in exploring their diversity, species richness, and bioprospecting. Fungal endophytes from unique environmental settings offer a pool of potentially useful medicinal entities. Owing to the constant stresses imposed on macroalgae by marine environments, it is believed that algae and their associated endophytic symbionts represent a good source of structurally diverse bioactive secondary metabolites. Despite the proven significance of active metabolites of algal endophytes, little have been exploited. This review highlights the latest discoveries in algicolous endophytic research, with particular focus on the bioactive metabolites from algal endophytes. Compounds are classified according to their reported biological activities, like anticancer, antibacterial, antifungal, and antioxidant properties. Present experimental evidence suggests that a majority of the bioactive metabolites were reported from Phaeophyceae followed by Rhodophyceae and Chlorophyceae. An intensive search for newer and more effective bioactive metabolites has generated a treasure trove of publications, and this review partially covers the literature published up to 2016.

콜라비의 저장 중 품질 및 이차대사산물의 변화 (Changes in the quality and secondary metabolites of kohlrabi during storage)

  • 박미희;서정민;김선주;김원배;이정수;최지원
    • 한국식품저장유통학회지
    • /
    • 제21권5호
    • /
    • pp.601-608
    • /
    • 2014
  • 콜라비의 저장기간 동안 품질이 유지되는 적정 유통기간 설정을 위해, 2차대사산물 및 생리적 변화를 조사하였다. 그 결과, 콜라비를 상온에 저장할 경우, 저장 2주후부터 부패가 발생하기 시작함과 더불어 총 페놀 및 플라보노이드 함량 또한 급격한 감소를 보였다. 반면에 저온저장의 경우, 저장 2개월간 품질의 변화가 거의 없고 기능성 성분도 초기값을 유지하거나 높은 값을 유지하였다. 콜라비의 총 페놀 함량과 플라보노이드 함량은 저온저장으로 증가하였고, 상온저장 기간 동안 감소하였다. 또한 포장처리에 관하여, 콜라비의 페놀함량은 저장기간동안 포장처리 유무에 따른 유의적인 차이가 없었으나, 플라보노이드 함량은 0.05 mm PE 필름 밀봉시 이들 성분의 변화가 적은 것으로 나타나, 콜라비를 포장하여 저장하는 것이 플라보이드 함량 보존에 유효한 것으로 나타났다. 항암 성분으로 알려진 glucosinolate는 저장 기간 동안 유의적인 차이가 없는 것으로 나타나, 콜라비가 장기 저온저장동안 이들 유용한 성분을 유지하는 것으로 보인다. 본 연구에서 콜라비의 저장기간 동안 2차대사산물과 외관 품질변화는 밀접한 상관관계가 나타났다. 이러한 결과로부터, 페놀화합물과 같은 2차대사물질이 콜라비의 저장수명 구명을 위한 품질 지표로서 검토될 수 있을 것으로 제시한다.

Fish Oil Enriched Diet-Induced in vivo Lipid Peroxidation and Increased Excretion of Urinary Lipophilic Lipid Metabolites in Rats

  • Kim, Song-Suk
    • Nutritional Sciences
    • /
    • 제3권1호
    • /
    • pp.18-24
    • /
    • 2000
  • Peroxidative stimuli mediated by high polyunsaturated fatty acid administration in rats induced in vivo lipid peroxidation and resulted in increased urinary excretion of a number of lipophilic aldehydes and related carbonyl compounds. These secondary lipid peroxiation products, measured as 2, 4-dinitrophenylhydrazine deritives, were detected and identified by the newly developed HPLC method. The identified urinary lipophilic nonpolar aldehydes and related carbonyl compounds were butanal, butan-2-one, pentan-2-one, hexanal, hex-2-enal, hepta-2, 4-dienal, hept-2-enal, octanal, and oct-2-enal. Lipophilic polar aldehydes such as 4-hydroxyhex-2-enal and 4-hydroxyoct-2-enal were also identified. A polyunsaturated fatty acid diet containing n-3 fatty acids generally caused high levels of urinary excretion of lipophilic aldehydes and related carbonyl compounds in rats than a normal diet. Significantly increased secondary lipid peroxidation products were hexanal, hepta-2, 4-dienal, octanal, 4-hydroxyhex-2-exal, 4-hydroxyoct-2-enal, and a number of unidentified compunds.

  • PDF

Comparison of Resveratrol Contents in Medicinal Plants

  • Lim, Jung-Dae;Yun, Song-Joong;Lee, Sun-Ju;Chung, Ill-Min;Kim, Myong-Jo;Heo, Kweon;Yu, Chang-Yeon
    • 한국약용작물학회지
    • /
    • 제12권2호
    • /
    • pp.163-170
    • /
    • 2004
  • Secondary phenolic metabolites play an important role in plant defense mechanisms, and increasing evidence indicates that many phenolic compounds are important in human health. To date, few studies have investigated the impact of various medicinal plants on levels of secondary plant metabolites. To address this issue, 82 species of Korean medicinal plants were screened to determine their resveratrol contents. Among 82 medicinal plants, 5 species such as Gardenia jasmonoides, Phlomis umbrosa, Rheum palmatum L., Polygala tenuifolia, Rubus chingii HU contained relatively high concentrations of resveratrol $(179.75{\sim}42.71\;{\mu}g/g)$. But, 40 species including Adenophora triphylla var. japonica HARA were only observed low concentrations or trace of resveratrol, and 20 species including Alpinia officinarum HANCE did not contain a resveratrol.

Investigation and utilization of unique natural products from endemic tree species in Taiwan

  • Chu, Fang-Hua
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2018년도 추계학술대회
    • /
    • pp.23-23
    • /
    • 2018
  • Taiwan, formerly known as Formosa, located on tropical and subtropical climate zones with abundant biological resources. According to the latest version of the Flora of Taiwan, there are 4339 species of vascular plants including 1054 endemic species. First, Taiwania (Taiwania cryptomerioides), named after its native island of Taiwan, have been isolated more than 500 secondary metabolites, including lignans, terpenoids, steroids, and flavonoids. Several of the metabolites are reported to have antibacterial, antifungal, antimite, antitermite and antitumor activities. In order to investigate plant secondary metabolic diversity toward industrial applications, we established deep transcriptome resources for non-model plants and fungi to produce terpenoid metabolites of economic importance. Second, many plants of Lauraceae have been utilized in folk medicine for their exciting bioactivities. The twigs and leaves from 27 tree species of Lauraceae grown in Taiwan were performed to evaluate potential bioactivity. The leaves of Cinnamomum osmophloeum are traditionally used in folk medicines, and many biological activities have been identified, such as antibacterial, antifungal, antitermite, antidiabetic, antihyperuricemia, antiinflammatory, and antioxidant activities. However, C. osmophloeum has nine chemotypes with various secondary metabolite profiles. In order to efficiently produce active compounds, we established the genetic markers to identify the chemotype plants. Finally, Cinnamomum kanehirae is the host of the medicinal mushroom Antrodia cinnamomea. Several in vivo and in vitro studies indicated that A. cinnamomea possesses a diverse range of biological activities. Because of the potential pharmacological application, we established the transformation system to enhance the triterpenoid contents production.

  • PDF

PTP1B Inhibitory Secondary Metabolites from Marine-Derived Fungal Strains Penicillium spp. and Eurotium sp.

  • Sohn, Jae Hak;Lee, Yu-Ri;Lee, Dong-Sung;Kim, Youn-Chul;Oh, Hyuncheol
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권9호
    • /
    • pp.1206-1211
    • /
    • 2013
  • The selective inhibition of PTP1B has been widely recognized as a potential drug target for the treatment of type 2 diabetes and obesity. In the course of screening for PTP1B inhibitory fungal metabolites, the organic extracts of several fungal species isolated from marine environments were found to exhibit significant inhibitory effects, and the bioassay-guided investigation of these extracts resulted in the isolation of fructigenine A (1), cyclopenol (2), echinulin (3), flavoglaucin (4), and viridicatol (5). The structures of these compounds were determined mainly by analysis of NMR and MS data. These compounds inhibited PTP1B activity with 50% inhibitory concentration values of 10.7, 30.0, 29.4, 13.4, and 64.0 ${\mu}M$, respectively. Furthermore, the kinetic analysis of PTP1B inhibition by compounds 1 and 5 suggested that compound 1 inhibited PTP1B activity in a noncompetitive manner, whereas compound 5 inhibited PTP1B activity in a competitive manner.

Secondary Metabolites from Anthonotha cladantha (Harms) J.Léonard

  • Laurent Voufack Lefack Bongmo;Achille Nouga Bissoue;Samuel Magloire Bissim;Georges Bellier Tabekoueng;Willifred Dongmo Tekapi Tsopgni;Mehreen Lateef;Felicien Mushagalusa Kasali;Muhammad Shaiq Ali;Alain Francois Kamdem Waffo;Jean Duplex Wansi
    • Natural Product Sciences
    • /
    • 제29권1호
    • /
    • pp.50-58
    • /
    • 2023
  • The phytochemical investigation of the crude methanolic extracts roots and stem bark of Anthonotha cladantha (Harms) J.Léonard led to the isolation and identification of twelve secondary metabolites: 2,3-dihydroxypropyl hexacosanoate (1), hederagenine (2), cycloeucalenol (3), 2α-hydroxylupeol (4), betulinic acid (5), lupeol (6), heptacosan-2-one (7), triacontanoic acid (8), stigmast-4-en-3-one (9), β-sitosterol (10), stigmasterol (11), and stigmasterol-3-O-β-D-glucopyranoside (12). Their structures were elucidated with the help of their spectroscopic and physical data and by comparison with those reported in the literature. To the best of our knowledge, from all those compounds, 2,3-dihydroxypropyl hexacosanoate (1), hederagenine (2), cycloeucalenol (3), 2α-hydroxylupeol (4), and betulinic acid (5) are being reported for the first time from this genus. In addition, the acetylation of compound 1 afforded a new derivative 3-(hexacosanoyloxy)propane-1,2-diyl diacetate (1a). Compound 1 possessed a moderate α-glucosidase inhibitory activity with an IC50 value of 39.2 ± 0.22 μM; it neither showed antioxidant activity nor inhibition against the enzyme urease. Compound 1a exhibited weak antioxidant activity in the DPPH assay with an IC50 value of 80.3 ± 0.83 μM but was inactive against α-glucosidase and urease. Furthermore, both compounds 1 and 1a were inactive against seven pathogenic bacterial strains.

GC-MS Analysis of the Extracts from Korean Cabbage (Brassica campestris L. ssp. pekinensis ) and Its Seed

  • Hong, Eunyoung;Kim, Gun-Hee
    • Preventive Nutrition and Food Science
    • /
    • 제18권3호
    • /
    • pp.218-221
    • /
    • 2013
  • Korean cabbage, a member of the Brassicaceae family which also includes cauliflower, mustard, radish, and turnip plants, is a crucial leafy vegetable crop. Korean cabbage is harvested after completion of the leaf heading process and is often prepared for use in "baechu kimchi", a traditional Korean food. Many of the components in Korean cabbage are essential for proper human nutrition; these components can be divided into two groups: primary metabolites, which include carbohydrates, amino acids, fatty acids, and organic acids, and secondary metabolites such as flavonoids, carotenoids, sterols, phenolic acids, alkaloids, and glucosinolates (GSLs). Using gas chromatography-mass spectrometry, this study examined the variety of volatile compounds (including isothiocyanates) contained in Korean cabbage and its seed, which resulted in the identification of 16 and 12 volatile compounds, respectively. The primary volatile compound found in the cabbage was ethyl linoleolate (~23%), while 4,5-epithiovaleronitrile (~46%) was the primary volatile component in the seed.

Could Natural Products Confer Inhibition of SARS-CoV-2 Main Protease? In-silico Drug Discovery

  • Mohamed-Elamir F Hegazy
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2020년도 추계국제학술대회
    • /
    • pp.14-14
    • /
    • 2020
  • In December 2019, the COVID-19 epidemic was discovered in Wuhan, China, and since has disseminated around the world impacting human health for millions. Herein, in-silico drug discovery approaches were utilized to identify potential candidates as Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro) inhibitors. We investigated several databases including natural and natural-like products (>100,000 molecules), DrugBank database (10,036 drugs), major metabolites isolated from daily used spices (32 molecules), and current clinical drug candidates for the treatment of COVID-19 (18 drugs). All tested compounds were prepared and screened using molecular docking techniques. Based on the calculated docking scores, the top ones from each project under investigation were selected and subjected to molecular dynamics (MD) simulations followed by molecular mechanics-generalized Born surface area (MM-GBSA) binding energy calculations. Combined long MD simulations and MM-GBSA calculations revealed the potent compounds with prospective binding affinities against Mpro. Structural and energetic analyses over the simulated time demonstrated the high stabilities of the selected compounds. Our results showed that 4-bis([1,3]dioxolo)pyran-5-carboxamide derivatives (natural and natural-like products database), DB02388 and Cobicistat (DB09065) (DrugBank database), salvianolic acid A (spices secondary metabolites) and TMC-310911 (clinical-trial drugs database) exhibited high binding affinities with SARS-CoV-2 Mpro. In conclusion, these compounds are up-and-coming anti-COVID-19 drug candidates that warrant further detailed in vitro and in vivo experimental estimations.

  • PDF